Quantifying the Effect of LiDAR Data Density on DEM Quality

Author:

Garzón Barrero JuliánORCID,Cubides Burbano Carlos EduardoORCID,Jiménez-Cleves GonzaloORCID

Abstract

LiDAR sensors capture three-dimensional point clouds with high accuracy and density; since they are regularly obtained, interpolation methods are required to generate a regular grid. Given the large size of its files, processing becomes a challenge for researchers with not very powerful computer stations. This work aims to balance the sampling density and the volume of data, preserving the sensitivity of representation of complex topographic shapes as a function of three surface descriptors: slope, curvature, and roughness. This study explores the effect of the density of LiDAR data on the accuracy of the Digital Elevation Model (DEM), using a ground point cloud of 32 million measurements obtained from a LiDAR flight over a complex topographic area of 156 ha. Digital elevation models with different relative densities to the total point dataset were produced (100, 75, 50, 25, 10, and 1 % and at different grid sizes 23, 27, 33, 46, 73, and 230cm). Accuracy was evaluated using the Inverse Distance Weighted and Kriging interpolation algorithms, obtaining 72 surfaces from which their error statistics were calculated: root mean square error, mean absolute error, mean square error, and prediction effectiveness index; these were used to evaluate the quality of the results in contrast with validation data corresponding to 10 % of the original sample. The results indicated that Kriging was the most efficient algorithm, reducing data to 1 % without statistically significant differences with the original dataset, and curvature was the morphometric parameter with the most significant negative impact on interpolation accuracy.

Publisher

Universidad Militar Nueva Granada

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3