Some Classical Methods in the Analysis of an Aedes aegypti Model

Author:

Olarte García Julián AlejandroORCID,Muñoz Loaiza AníbalORCID

Abstract

The Taylor series approximation is often used to convert non-linear dynamical systems to linear systems, while the Hartman-Großman theorem analyzes the local qualitative behavior of the non-linear system around a hyperbolic equilibrium point. The global stability of an equilibrium point in the Lyapunov sense is based on the principle that if the equilibrium point is disturbed and the flow of the system is dissipative, then the system must be stable. This article applies these methods to an ecological Aedes aegypti model, whose local and global stability are characterized by a population growth threshold. In conclusion, the classical theory of dynamical systems, validated computationally, yields theoretical results in favor of controlling the local population of Aedes aegypti. It becomes usable if the proposed model is reinforced with the estimation of the parameters that describe the relationships between stages (aquatic and aerial) of the mosquito population and the inclusion of vector control strategies to protect people from the viruses transmitted by Aedes aegypti.

Publisher

Universidad Militar Nueva Granada

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3