Videocapillaroscopic monitoring of microcirculation in rats during photodynamic therapy

Author:

Guryleva A. V.1,Machikhin A. S.1,Grishacheva T. G.2,Petrishchev N. N.2

Affiliation:

1. Scientific and Technological Center for Unique Instrumentation of the Russian Academy of Sciences

2. First St. Petersburg State Medical University named after Academician I.P. Pavlova

Abstract

The proposed approach to microcirculation assessment is non-invasive, informative, and can be implemented during photoactivation, and thus is perspective both for research tasks and clinical practice. The functional principles of the vasculature response to photodynamic exposure, identified using this technique, also foster the efficiency and safety of photodynamic therapy. The developed setup allows simultaneous photodynamic exposure and studying the microcirculation parameters by videocapillaroscopy and photoplethysmography techniques. Photodynamic action is carried out by 662 nm laser radiation with a power density of 15 mW/cm2  in continuous and pulsed modes. The imaging system of the setup consists of a large working distance microscope, an optical filter, and a monochrome camera. The illumination system is based on LED with a central wavelength of 532 nm. The acquired images were processed in order to obtain morphometric and hemodynamic microcirculation data in the inspected skin area. To compare the proposed approach with existing methods, we measured blood flow parameters by a laser Doppler flowmeter. We tested the developed setup on rats injected with a photosensitizer and obtained active vessel maps, photoplethysmograms, and skin vessel density values before, during, and after photoactivation in both generation modes. The proposed approach allows to reveal differences in the microcirculation response to photodynamic effects of low power densities in different modes, in particular, the discrepancy between the time from the start of exposure to the cessation of blood flow and the start of the recovery period.

Publisher

Russian Photodynamic Association

Subject

Dermatology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3