Spectroscopic study of methylene blue photophysical properties in biological media

Author:

Pominova D. V.1,Ryabova A. V.1,Romanishkin I. D.2,Markova I. V.3,Akhlustina E. V.3,Skobeltsin A. S.1

Affiliation:

1. Prokhorov General Physics Institute of Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

2. Prokhorov General Physics Institute of Russian Academy of Sciences

3. National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Abstract

A spectroscopic study of the photophysical properties of methylene blue (MB) in aqueous solutions was carried out. Absorption and fluorescence spectra as well as fluorescence lifetime were recorded. The concentration dependence of the intensity and shape of the spectra allowed establishing the ranges of MB concentrations for in vitro and in vivo studies at which aggregation is not observed (up to 0.01 mM, which corresponds to 3.2 mg/kg). Studies of photodegradation in biological media showed that photobleaching of more than 80% in plasma and culture media is observed already at a dose of 5 J/cm2 , while in water at this concentration and dose photobleaching is not yet observed, and at a dose of 50 J/cm2  photobleaching of MB is about 30%. It was found that in media containing proteins and having an alkaline pH, photobleaching occurs significantly faster than in neutral aqueous media. The ionic strength of the solution has no effect on the photobleaching rate. Such photobleaching is caused by the photodegradation of MB rather than the transition to the leucoform.The efficiency of singlet oxygen generation and photodynamic activity were evaluated in vitro. In the investigated range of MB concentrations, the efficiency of singlet oxygen generation is rather low, because positively charged MB binds to negatively charged cell membranes, which leads to a change in the type of photodynamic reaction. The emergence of other reactive oxygen species (ROS), different from singlet oxygen, in cells has been demonstrated. The generation of ROS and the low quantum yield of singlet oxygen generation indicate the tendency of MB to provide the type I photosensitization mechanism (electron transfer with the formation of semi-reduced and semi-oxidized MB+ radicals) rather than to the type II mechanism (energy transfer to oxygen with the formation of singlet oxygen) in biological media and in vivo.

Publisher

Russian Photodynamic Association

Subject

Dermatology,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3