Affiliation:
1. East-Siberian Branch of Russian Metrological Institute of Technical Physics and Radio Engineering
2. Russian Metrological Institute of Technical Physics and Radio Engineering
3. Irkutsk National Research Technical University
Abstract
The article is dedicated to research in the fi eld of measuring the dielectric parameters of materials. The aim of the research is to study promising methods for measuring the complex dielectric permittivity of weakly absorbing materials in the decimeter wavelength range, as well as the non-resonant method for measuring the dielectric parameters of materials with high dielectric losses. In order to achieve the set goal of improving the state primary standard of complex dielectric permittivity in the frequency range from 1 to 178.4 GHz, tasks were set to expand the frequency range to 0.1 GHz and the range of reproducible values of the dielectric loss tangent to 10–1. As a result of the improvement, new equipment was introduced into the composition of the standard, and new measurement methods were developed. To measure the complex dielectric permittivity of weakly absorbing materials in the decimeter wavelength range, a resonant measurement method in a coaxial resonator with a shortening capacitive gap and a measurement method in a bulk H011-resonator with dielectric fi lling were developed. To measure elevated dielectric losses up to 10–2–10–1, a measurement method using a non-resonant measuring transducer based on a shielded dielectric waveguide with a measured dielectric sample as such a waveguide has been developed. The developed methods are applied in the Primary standard of complex dielectric permittivity in the frequency range from 0.1 to 178.4 GHz, GET 110-2023. The frequency range of the standard is 0.1–178.4 GHz, the range of reproducible values of relative dielectric permittivity is 1.2–500, dielectric loss tangent 10–8–10–1. The scope of application of GET 110-2023 is metrological support of dielectric control in production of radio frequency cables, telecommunication equipment, electronic components, etc.
Publisher
FSUE VNIIMS All-Russian Research Institute of Metrological Service
Reference11 articles.
1. Egorov V. N., Kashchenko M. V., Masalov V. L., Tokareva E. Yu., Nong Kuok Kuang. Gosudarstvennyi pervichnyi etalon edinits kompleksnoi dielektricheskoi pronitsaemosti v diapazone chastot ot 1 do 178,4 GGts // Izmeritel'naya tekhnika. 2014. № 1. S. 3–7. https://www.elibrary.ru/ryetov [Egorov V. N., Kashchenko M. V., Masalov V. L., Tokareva E. Yu., Quang N. Q. Measurement Techniques, 2014, vol. 57, no. 1, pp. 1–7 https://doi.org/10.1007/s11018-014-0398-z ]
2. Baker-Jarvis J. R., Riddle B. F. Dielectric Measurements Using a Reentrant Cavity: Mode-Matching Analysis, Technical Note (NIST TN), National Institute of Standards and Technology, Gaithersburg, MD, 1996, vol. 1384, pp. 1–13.
3. Carter R. G., Feng J., Becker U. IEEE Transactions on Microwave Theory and Techniques, Dec. 2007, vol. 55, no. 12, pp. 2531–2538. https://doi.org/10.1109/TMTT.2007.909750
4. Kanai Y., Tsukamoto T., Miyakawa M., Kashiwa T. IEEE Transactions on Magnetics, July 2000, vol. 36, no. 4, pp. 1750–1753. https://doi.org/10.1109/20.877782
5. Thompson F., Haigh A. D., Dillon B. M., Gibson A. A. P. IEE Proceedings – Science, Measurement and Technology, 2003, vol. 150, no. 3, pp. 113–117. https://doi.org/10.1049/ip-smt:20030011