Measurement Uncertainty of Surface Temperature Distributions for Laser Powder Bed Fusion Processes

Author:

Deisenroth David C.1,Mekhontsev Sergey2,Lane Brandon1,Hanssen Leonard2,Zhirnov Ivan3,Khromchenko Vladimir2,Grantham Steven2,Cardenas-Garcia Daniel4,Donmez Alkan1

Affiliation:

1. National Institute of Standards and Technology, Engineering Laboratory, Intelligent Systems Division, Gaithersburg, MD 20899, USA

2. National Institute of Standards and Technology, Physical Measurement Laboratory, Sensor Science Division, Gaithersburg, MD 20899, USA

3. Karlstad University, 651 88 Karlstad, Sweden

4. Centro Nacional de Metrología, Carretera a Los Cués, Municipio El Marqués, Querétaro C.P. 76246, México

Abstract

This paper describes advances in measuring the characteristic spatial distribution of surface temperature and emissivity during laser-metal interaction under conditions relevant for laser powder bed fusion (LPBF) additive manufacturing processes. Detailed descriptions of the measurement process, results, and approaches to determining uncertainties are provided. Measurement uncertainties have complex dependencies on multiple process parameters, so the methodology is demonstrated on one set of process parameters and one material. Well-established literature values for high-purity nickel solidification temperature and emissivity at the solidification temperature were used to evaluate the predicted uncertainty of the measurements. The standard temperature measurement uncertainty is found to be approximately 0.9 % of the absolute temperature (16 °C), and the standard relative emissivity measurement uncertainty is found to be approximately 8 % at the solidification point of high-purity nickel, both of which are satisfactory. This paper also outlines several potential sources of test uncertainties, which may require additional experimental evaluation. The largest of these are the metal vapor and ejecta that are produced as process by-products, which can potentially affect the imaging quality, reflectometry results, and thermal signature of the process, while also affecting the process of laser power delivery. Furthermore, the current paper focuses strictly on the uncertainties of the emissivity and temperature measurement approach and therefore does not detail a variety of uncertainties associated with experimental controls that must be evaluated for future generation of reference data.

Funder

Engineering Laboratory

Publisher

National Institute of Standards and Technology (NIST)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3