Dynamic Plasticity Model for Rapidly Heated 1045 Steel Up to 1000°C

Author:

Mates Steven P.1,Li Sheng-Yen2

Affiliation:

1. National Institute of Standards and Technology, Material Measurement Laboratory, Materials Science and Engineering Division, Gaithersburg, MD 20899, USA

2. Southwest Research Institute, San Antonio, TX 78238, USA

Abstract

The National Institute of Standards and Technology (NIST) developed an experimental technique to measure the dynamic flow stress of metals under rapid heating to study their time-dependent plastic response when heating times are short enough to interrupt or bypass thermally driven microstructural evolution. Such conditions may exist as chips are formed in the machining process. Measurements of American Iron and Steel Institute1045 steel behavior up to 1000 °C showed complex thermal softening due to dynamic strain aging effects and the diffusion-limited austenite transformation process beginning at the A1 temperature (712 °C). This paper proposes a constitutive model to capture the flow stress and hardening evolution of 1045 steel under rapidly heated conditions for simulating metal cutting. The model combines the Preston-Tonks-Wallace plasticity model, which uses five parameters to capture complex rate- and temperature-sensitive strain hardening, with a dual-rate-sensitivity model to capture the response of rapidly heated 1045 steel. Finally, a strain-rate-dependent Gaussian function is introduced to capture dynamic strain aging effects, which act over a narrow range of temperatures that change with strain rate. The proposed model is compared to existing plasticity models for 1045 steel over the range of data available and at a representative machining condition.

Funder

Material Measurement Laboratory

Publisher

National Institute of Standards and Technology (NIST)

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3