Design, Construction, and Calibration of a Temperature Monitoring System for Resistance Standards

Author:

Paseltiner Daniel1,Payagala Shamith2,Jarrett Dean2

Affiliation:

1. Bates College, Lewiston, ME 04240, USA

2. National Institute of Standards and Technology, Physical Measurement Laboratory, Gaithersburg, MD 20899, USA

Abstract

We present the design, construction, calibration, and software development of a temperature monitoring system for resistance standards. The system supports 19 temperature probes. Over the range 295.15 K to 299.15 K (22 °C to 26 °C), we report an expanded uncertainty (k = 2) of 9 mK. With the addition of a calibrated standard reference thermometer and a programmable oil bath, the system was used to automatically calibrate the temperature probes over this 4 K range. In continuous operation, this system supplies a constant current to thermistor temperature probes and a reference resistor, and it measures the voltage across them. The ratio between each of the probe voltages and the reference voltage is multiplied by the reference resistance to determine the resistance of each probe. To reduce systematic errors, voltage measurements are taken with the current flowing in both directions. Finally, using the Steinhart-Hart model, the probe resistances are converted to their corresponding temperatures and recorded to a secure network drive. If a probe reads a temperature outside of the desired temperature range for its location, an email alert is sent to all the staff who work in the laboratory. An additional message will be sent to facility services if the probe is measuring the room temperature in the laboratory. The system was developed for the NIST resistance laboratory, but it could easily be duplicated for use in any laboratory environment where continuous temperature monitoring in multiple locations with expanded uncertainty (k = 2) of 9 mK is needed.

Funder

Physical Measurement Laboratory

Publisher

National Institute of Standards and Technology (NIST)

Subject

General Engineering

Reference8 articles.

1. NIST measurement service for DC standard resistors

2. Temperature and Pressure Coefficients of Resistance for Thomas 1 Ω Resistors

3. Moore J, Davis C, Coplan M (2015) Building Scientific Apparatus (Cambridge University Press, Cambridge, UK), 4th Ed., p 607.

4. NIST Calibration Uncertainties of Thermistor Thermometers over the Range from −50 °C to 90 °C

5. Maxim Integrated Products (1996) Phase-reversal analog switches. Maxim Integrated Products, San Jose, CA.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3