Phase Uncertainty in Digital Holographic Microscopy Measurements in the Presence of Solution Flow Conditions

Author:

Brand Alexander S

Abstract

Digital holographic microscopy (DHM) is a surface topography measurement technique with reported sub-nanometer vertical resolution. Although it has been made commercially available recently, few studies have evaluated the uncertainty or noise in the phase measurement by the DHM. As current research is using the DHM to monitor surface topography changes of dissolving materials under flowing water conditions, it is necessary to evaluate the effect of water and flow rate on the uncertainty in the measurement. Uncertainty in this study was concerned with the temporal standard deviation per pixel of the reconstructed phase. Considering the effects of solution flow rate, magnification, objective lens type (air or immersion), and experimental configuration, measurements under static conditions in air and in water with an immersion lens yielded the smallest amount of uncertainty (mean of ≤ 0.5 nm up to 40× magnification). Increasing the water flow rate resulted in an increase in mean uncertainty to ≤ 0.6 nm up to 40× with an immersion lens. Observations of a sample through a glass window at 20× magnification in flowing water also yielded increasing uncertainty, with mean values of ≤ 0.5 nm, ≤ 0.8 nm, and ≤ 1.1 nm for flow rates of 0 mL min−1, 15 mL min−1, and 33 mL min−1. Different hologram acquisition rates (12.5 s−1 and 25 s−1) did not significantly impact the uncertainty in the phase. Collecting holograms in single-wavelength versus dual-wavelength modes did impact the uncertainty, with the mean uncertainty at 10× magnification for the same wavelength being ≤ 0.5 nm from the single-wavelength mode compared to ≤ 1.5 nm from the dual-wavelength mode. When the quantified uncertainty was applied to simulated dissolution data, lower limits of measured dissolution rates were found below which the measured data may not be distinguishable from the uncertainty in the measurement. The limiting surface-normal dissolution velocity is −10−11.7 m s−1 for experiments with an immersion lens in flowing water conditions and −10−11.7 m s−1, −10−11.4 m s−1, and −10−11.0 m s−1 for static (0 mL min−1), slow (≤ 15 mL min−1), and fast (≤ 109 mL min−1) flowing water conditions in experiments with a glass window, respectively. The data presented by this study will allow for better experimental design and methodology for future dissolution or precipitation studies using DHM and will provide confidence in the data produced in postprocessing.

Funder

Engineering Laboratory

Publisher

National Institute of Standards and Technology (NIST)

Subject

General Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3