Author:
You Woo Jun,Park Jung Wook,Kim Jung Yong,Kim Tea Jung,Hwang Cheol Hong,Kim Sung Chan
Abstract
This study aims to identify the key design factors of a large-scale calorimeter and evaluate the accuracy of the simulation results using the Fire Dynamics Simulator (FDS) program. The design specifications of a domestic large-scale calorimeter were analyzed to determine the modeling and input conditions for the simulation. The simulation results of temperature, mass flow rate, and oxygen concentration reduction inside the duct were compared with the experimental results for heptane pool fires with diameters of 1.1 m, 1.24 m, and 1.44 m, respectively. To validate the accuracy of the simulation results, the deviations, calculated using FDS for the heat release rate as the experimental value, were found to be 19.12%, 11.86%, and 0.22% for temperature, mass flow rate, and oxygen concentration, respectively. Ultimately, the results of the heat release rate inside the duct obtained by the oxygen consumption method with FDS were found to be consistent with the experimental value, within 2.58%. However, the deviation of oxygen concentration is reduced as the deviation of mass flow rate increases for a constant heat release rate. This implies that for more accurate analysis, the heat loss and shape factors in the duct should be considered.
Funder
Ministry of Trade, Industry and Energy
Defense Acquisition Program Administration
Publisher
Korea Institute of Fire Science and Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献