Efficiency in Parallel Computing of FDS Model for Compartment Fire Simulation: Shared Memory System

Author:

Min Su-Gyeong,Kim Sung-Chan

Abstract

This study evaluates the computational efficiency based on the parallel processing mode and domain decomposition method of the FDS model to enhance the computational performance of fire simulation. A single compartment of dimensions 12.0 m × 3.8 m × 3.0 m is considered along with a rectangular fire source (0.4 m × 0.4 m) fueled by n-Heptane. The computational domain was divided into 136,000 cells forming a grid size of 0.1 m, and the computational efficiency for each calculation was evaluated by the wall clock time for a simulation time of 300 s using a computational framework with 24 cores of a single CPU and a 256 GB shared memory system. The MPI and hybrid mode in FDS parallel offers a greater speed-up capability than the OpenMP mode, and the domain decomposition method used greatly affects the computational efficiency. The maximum speed-up with the OpenMP mode was less than 1.5 for a single computational domain, which indicates that there is an optimal condition for thread assignment and domain decomposition in the OpenMP mode. The present study is expected to contribute toward obtaining effective fire simulation results with limited computing power and time in fire protection engineering.

Funder

National Fire Agency

Publisher

Korea Institute of Fire Science and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3