Fire Characteristics of Lithium-ion Battery According to the State of Charge in an Accelerating Rate Calorimeter

Author:

Kim Sin-Woo,Lee Eui-Ju

Abstract

Recently, the interest in ecofriendly energy as an alternative to fossil fuels, which cause climate change and sea level rise, has increased. To achieve the efficient utilization of ecofriendly energy, such as a renewable energy, considerable effort has been made to use energy storage systems (ESSs) and smart grid systems. However, many safety problems, such as battery fires caused by the increase in the use of secondary batteries, significantly limit their application scope. In this study, to investigate the fire characteristics of lithium ion batteries (LIBs), the characteristics of the spontaneous exothermic reaction and thermal runaway phenomenon that occur at each temperature of an LIB battery were investigated using an accelerating rate calorimeter. The batteries used in the experiments were standard 18650 cylindrical batteries with a capacity of 2600 mAh, and they were tested at three different state-of-charge (SOC) levels: 0%, 50%, and 100%. The type of heat generated by each experimental condition was classified into four stages, and the existence and temperature rise characteristics of each stage were investigated according to the SOC. Although thermal runaway occurred at both 50% and 100% SOC, the reaction at 50% SOC did not escalate into violent explosions like the reaction observed at 100% charging. Furthermore, the activation energies for the thermal runaway observed in the experiments conducted at 50% and 100% SOC are presented.

Publisher

Korea Institute of Fire Science and Engineering

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3