Investigation on Effects of Water Mist Characteristics According to Axial Position on Thermal Radiation Attenuation Performance

Author:

Kang Jun Seok,Lee Chi Young

Abstract

In this study, the effects of water mist characteristics according to the axial position on thermal radiation attenuation performance were experimentally investigated using the single-fluid nozzle. Under the water flow rate conditions of 200∼350 g/min, the thermal radiation attenuation performance was measured at the axial position (i.e., downstream direction of water mist from nozzle exit) of 200∼1000 mm. In addition, during the discharge of water mist, the water supply pressure and droplet size of water mist were measured and the water mist was visualized. As a result, with an increase in the water flow rate, the thermal radiation attenuation performance was improved. Overall, the attenuation rate was measured to be 12.4∼30.1%. In the axial position of 200∼400 mm, with an increase in the axial distance from the nozzle exit, the thermal radiation attenuation performance was improved. This may be because the effect of improvement of the thermal radiation attenuation performance by an increase in the spray width is predominant over the effect of reduction in it by an increase in the droplet size. In addition, in the axial position of 400∼1000 mm, with an increase in the axial distance from the nozzle exit, the thermal radiation attenuation performance was reduced. This is because the droplet size of water mist increases and spray width is narrowed. Based on this study, it was confirmed that the water mist characteristics according to the axial position and thermal radiation attenuation performance are closely correlated.

Funder

Ministry of Science and ICT

National Research Foundation of Korea

Publisher

Korea Institute of Fire Science and Engineering

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3