Development and Verification of a Fire Occurrence Prediction Model with Social-Architectural Factors

Author:

Zhang Chu,Hong Won-Hwa,Bae Young-Hoon

Abstract

In this study, we aim to develop a fire occurrence prediction model at the administrative district level by incorporating social-architectural factors. Based on data on social and architectural factors and the number of fire occurrences from 2015~2021 in various cities, counties, and districts, multiple machine learning algorithms (multilayer perceptron, LASSO regression, and random forest) were employed to implement and compare the performance of the fire occurrence prediction models. The results indicated that the model utilizing the random forest algorithm exhibited the best prediction performance. Furthermore, performance validation using 2022 data showed that out of 247 administrative districts, 171 had an error rate of 20% or less.

Funder

Ministry of Education

National Research Foundation of Korea

Publisher

Korea Institute of Fire Science and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3