Dependence of the velocity changes of secular variations on the position of observatory and time

Author:

Sumaruk T. P.,Sumaruk P. V.

Abstract

According to the data of world observatories net secular variations of geomagnetic fields from internal and outer sources have been studied. Averaged 3-year data have been used for this purpose. Procedure of calculations of secular variations from internal and outer sources according to observatories data has been submitted. 1979 has been chosen as a zero level for accounting secular variations from outer sources because the sign of the large-scale magnetic field has changed this year. It has been shown that the value of secular variations from outer sources is different for different regions and increases with the growth of the latitude of magnetic observatory. Maximal values of secular variations are observed in the northern polar cap as well as at the longitudes of the eastern focus of secular variation. It has been shown that at the DIK, CSS, TIK observatories secular variations have maximal values. Groups of observatories have been segregated with symmetric and asymmetric changes of secular variation comparing to 1979. Symmetric changes of secular variation during two Hail’s cycles are observed at the observatories in circumpolar area (ALE, NAL, BJN), in auroral and middle latitudes. Maximal asymmetry of secular variation is observed at the observatories GDH, BLC, FCC, as well as at certain subauroral observatories and the regions with raised seismic activity. Secular variation from outer sources depends on the value of the large scale magnetic field of the Sun. The value of secular variation from the inner sources has been modulated by the outer sources and depends on special features of underlying surfaces of the observatories, induction currents in particular.

Publisher

Institute of Geophysics of the National Academy of Sciences of Ukraine by S.I. Subbotin name

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Secular variations on the North American tectonic plate;Geofizicheskiy Zhurnal;2022-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3