On the similarity of shear deformation of a granular massif and a fragmented medium in the seismically active area

Author:

Mykulyak S. V.,Kulich V. V.,Skurativskyi S. I.

Abstract

In recent research, the dynamics of the medium located in the seismic region at the boundary of tectonic plates is considered as the behavior of a complex open system that is in a state of self-organized criticality. Such an approach results from the very laws of earthquake generation and the complex structure of these areas. The network of faults and cracks makes seismic zones significantly heterogeneous and fragmented. Therefore, discrete models are increasingly used to model the dynamics of these media. The basis for comparing the model and the full-scale object serves the statistical regularities of their dynamic deformation. Relying on this concept, in the paper it is modeled the shear dynamics of a granular massif composed of identical cubic granules and is compared system’s statistical characteristics with the similar characteristics obtained for the earthquake generation zone. Shear deformation is carried out by means of the box consisting of two parts — movable and immovable ones. The movable part possesses the cover which receives kinetic energy from the granular massif in the process of shear deformation. For numerical simulations of the shear dynamics, the discrete element method is applied. The numerical calculations result in the distribution of cover’s kinetic energy jumps simulating the perturbations transmitted from the granular system to an external medium. It turned out that the distribution for these perturbations is the power dependence with an exponent that is inherent in earthquakes (Gutenberg-Richter law). Before and after large perturbations it is observed the swarms of smaller perturbations which are the analogues of foreshocks and aftershocks. The distributions of element’s velocity fluctuations and the correlation of velocity fluctuations are calculated as well. It is revealed the similarity of distributions for velocity fluctuations in the model massif and in the seismically active region of California, which includes the San Andreas fault. Moreover, the similarity of corresponding correlation functions is shown. They both are the functions of the stretched exponent. The obtained result indicates that shear processes in granular massifs and natural seismic processes in the San Andreas Fault are statistically similar.

Publisher

Institute of Geophysics of the National Academy of Sciences of Ukraine by S.I. Subbotin name

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3