Geoelectric studies of the Kozloduy nuclear power plant region, Bulgaria

Author:

Logvinov I.,Boyadzhiev G.,Srebrov B.,Rakhlin L.,Logvinova G.,Timoshin S.

Abstract

The task of the work was geoelectrical studies using variations of the magnetotelluric (MT) field of the Kozloduy nuclear power plant (KNPP) region and the integration of its results with other geological and geophysical knowledge. This paper presents the determined interpretation parameters of the MT field. The KNPP is located on the right bank of the Danube River in close proximity to the river. This fact, together with the location of electrified railways determined the unique network of locations of observation points for MT field variations. Based on the analysis of Earthquake Catalogs of Bulgaria and international seismicity databases, a map of the seismicity of nuclear power plant areas was built. Over the past 50 years, about 750 earthquakes (mainly south of KNPP) have been recorded at a distance of 40—80 km from the KNPP. Two magnetotelluric stations GEOMAG-02 were used at measurement sites, but equipment for recording electrical channels was available only for one station (due to the lack of another set of non-polarizable electrodes). The MT field variations were observed at 21 points, which are located on the territory with sides approximately 30—35 km from east to west and 40—50 km from north to south. For all observation points on the profile, only the parameters of the vertical magnetic transfer function (VMPF) were determined, in the form of the real (Cu) and imaginary (Cv) parts of the induction vector. The steadily induction vector was defined for periods from 10—20 to 4900—10 800 s. For most points it was possible to estimate the values Cu, Cv with an error of 0.02—0.04 and AzCu, AzCv 3—5°. The analysis showed the presence of anomalous behavior of Cu, Cv in different intervals of periods at some points. In the shortest (about 20 s) and longest periods (600 to 1000 s), the Cu directions completely coincide and indicate the presence of anomalous conductivity of the quasi-longitudinal strike to the west of the study area. This behavior of the Cu vector is in good agreement with power isohypsum strike of the Cenozoic deposits. At intermediate periods of 50—200 s, the behavior of Cu is more complex. Approaching the zone of high seismicity, the direction of the Cu differs from the previous ones by almost 90°. On the Geoelectrical sections, obtained as a result of 1D inversions of MTS curves at 4 points located in the southern part of the region, anomalous layers are identified (ρ about 10 ohm · m, the depth of the center of the object is 15—20 km). It can be assumed that well-conducting objects in the Earth’s crust of the region, apparently, prevent the propagation of seismic waves from nearby earthquakes to the north towards the KNPP.

Publisher

Institute of Geophysics of the National Academy of Sciences of Ukraine by S.I. Subbotin name

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3