Modeling of earthquake source parameters on December 12, 2018 (08:49:56,16; 36,4478° N; 140,5788° E; H = 62,0 km; Mw = 4,3, Japan)

Author:

Pak R.M.,Hrytsai O.D.

Abstract

Modeling of earthquake source parameters, such as the orientation of the fault plane and the direction of the fault slip, is important for understanding the physics of earthquake source processes, determining the stress-strain state of the geological medium and seismic hazard estimation. For modeling source parameters of the earthquake on December 12, 2018 at 08:49:56,16 (UTC) in Japan (36,4478° N, 140,5788° E, Northern Ibaraki Pref region) at a depth of 62 km with a magnitude of Mw = 4.3, the waveforms inversion was used to determine seismic moment tensor and representation it through a focal mechanism. The earthquake source is considered as a point source of seismic waves which propagate in a medium represented by a set of horizontally homogeneous elastic layers. An algorithm for determining seismic tensor components based on the forward problem solved by the matrix method, and using the generalized inverse solution, selecting only direct waves is applied. The input data for determining seismic moment components are data of only direct P waves selected from the observed records at six seismic stations of the Japanese local network NIED F-net: TSK, YMZ, ASI, ONS, SBT, KSK. The seismic moment tensor components were determined through waveform inversion using the matrix method. The obtained results, presented through a focal mechanism, are compared to the results obtained by the National Research Institute of Earth Sciences and Resistance to Natural Disasters (NIED CMT solutions). As a result of focal mechanisms comparison, it is concluded that the proposed algorithm for determining seismic moment tensor components can be used if it is impossible to use another method, or requires some refinement for another method. This approach is especially relevant for regions with low seismicity and insufficient number of stations. In addition, this method reduces the effects of an inaccurate medium model, because direct waves are much less distorted than reflected and converted, and that increases the accuracy and reliability of the method.

Publisher

Institute of Geophysics of the National Academy of Sciences of Ukraine by S.I. Subbotin name

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3