The deep structure of the Trans-European Suture Zone (based on seismic survey and GSR data) and some insights in to its development

Author:

Gintov O.B.,Tsvetkova T.О.,Bugaenko I.V.,Zayats L.N.,Murovska G.V.

Abstract

Deep crust and mantle structure of the Trans-European Suture Zone (TESZ) is considered on the basis of geological and geophysical investigations in the Baltic Sea-Black Sea section. The crustal structure of TESZ was studied on the basis of wide-angle depth seismic sounding (WDS), which was performed by international scientific teams with the participation of the Institute of Geophysics of NAS of Ukraine (IGF NASU). TESZ mantle structure was studied down to a depth of 800 km by the 3D P-velocity model of the Eurasian mantle according to the Taylor approximation method developed in the Institute of Geophysics of NASU. It is concluded that the deep crustal and mantle structure of the zone is a result of the simultaneous action of plate- and plum tectonic processes. TESZ was formed on two major collision alstages: in the late Ordovician — early Silurianas a result of the accession of the Avalonia microcontinent to the East European Platform (EEP), and in the late Carboniferous – early Permian with the accession of the European Hercynian (Varisian) terranes to EEP. The TESZ crustal structure is a trough of 150 (sometimes up to 200) km wide and several to 21 km deep, built by the allochthonous complex of paleozoids that underwent Caledonian and Hercynian orogens beyond the trough. Mantle structure of the TESZ, according to seismic tomographic studies, is of dual nature: on the one hand, the zone is traced subvertically to a depth of 700 km, on the other, within the zone there are everywhere inclined layers — slips to the depth of 350—600 km, that is the traces of subduction processes, which precededorac companied TESZ formation. Both structural features overlapeachother, which complicates paleotectonic and geohistorical analysis of TESZ formation. TESZ sinking to greater depths in the mantle can be explained by its increased permeability for advection of ultra-deep mantle fluids, established hereborogensic tomographic and paleomagnetic methods. Several variants of TESZ formation are assumed — A- or B-subduction during north eastern plate thrusting under the south western one in all variants.

Publisher

Institute of Geophysics of the National Academy of Sciences of Ukraine by S.I. Subbotin name

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3