THE INFLUENCE OF CHITOSANES ON THE DYNAMICS OF THE CONTENT OF PHENOLIC COMPOUNDS IN TOMATO LEAVES

Author:

Bohoslavets V.

Abstract

The aim of this work was to study the influence of chitosans of different molecular weight on the dynamics of the content of phenolic compounds in tomato plants of the 'Zagadka' variety. In the experiment, tomato plants treated with chitosan with a molecular weight of 50-190 kDa and 310-375 kDa were studied. Using the method of high-performance thin-layer chromatography (HPTLC), biochemical profiling of the extracts of the studied plants was performed. Differences in the primary reactions of plants to chitosans of different molecular weights were revealed. Low molecular chitosan caused a significant increase in the content of phenols and, accordingly, increased the antioxidant potential of leaf tissues. The increase in the content of phenols in response to the action of low-molecular-weight chitosan occurs due to the activation of phenylpropanoid synthesis and an increase in the total antioxidant potential, which indicates the mobilization of the plant organism against a potential pathogen. Thus, an hour after the treatment of plants with a solution of low molecular weight chitosan, the content of rutin in the leaves was 3.36 mg/g, and after 18 hours - 5.56 mg/g. The content of chlorogenic and caffeic acids in the leaves increased in 12 hours. In 18 hours, the content of chlorogenic acid was 1.64 mg/g, and caffeic acid was 0.18 mg/g. This may be due to the gradual decomposition of chlorogenic acid into its constituent components under the influence of low molecular weight chitosan, which is accompanied by the release of caffeic acid. A positive correlation was established between the pool of chlorogenic and caffeic acid (r = 0.995; p < 0.06). Therefore, depending on the molecular weight, chitosan causes significant changes in the synthesis of phenylpropanoids and biochemical transformation of complex and simple esters of hydroxycinnamic acids in tomato plants. The high-molecular chitosan solution caused a decrease in the number of compounds with high antioxidant potential in tomato leaves, which indicates the activation of another plant defense system. The content of rutin in leaves treated with high-molecular-weight chitosan after 18 hours was 1.32 mg/g, which is four times less compared to the treatment of plants with low-molecular-weight chitosan. At the same time, in response to treatment with high molecular weight chitosan, the content of caffeic acid in the leaves increased significantly. The decrease in the content of phenols is associated with the isolation of tissues from a potential threat, which is aimed at its neutralization. The result of such a reaction is the oxidation of phenolic compounds, additional lignification and suberinization of cell walls. The activation of various induced immunity reactions in the plant organism already in the first hours after eating low-molecular or high-molecular chitosan indicates the existence of a system of differential recognition of complex bipolymers by plants.

Publisher

Yuriy Fedkovych Chernivtsi National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3