Study of melting and crystallization process of CsPbBr3 by differential thermal analysis

Author:

Kanak A. I.1,Kanak L. M.1,Solodin S. V.1,Kopach O. V.1

Affiliation:

1. Yuriy Fedkovych Chernivtsi National University

Abstract

The crystalline CsPbBr3 was synthesized from CsBr (6N) and PbBr2 (5N) by the mechanochemical method with further fusion in quartz ampoule at 640-650 °С. After synthesis, the structure and chemical composition of the obtained material was confirmed by energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction analysis. The melting and crystallization of the obtained perovskite were investigated by the differential thermal analysis (DTA) with heating/cooling rates of 1, 5 and 10 °C/min. Measurements were carried on the self-constructed DTA-setup with S-type thermocouples in the range of 450-590 °C. Each cycle of heating/cooling was repeated three times to confirm the accuracy of the results obtained. A decrease in the melting point from ~ 568.1 °C to ~ 566.2 °C was demonstrated with an increase in the heating rate from 1 °C/min. up to 10 °C/min. respectively. Probably, it's due to the approach to equilibrium conditions of phase transformations at lower heating rates. We recorded an additional-endothermic effect during CsPbBr3 melting. This may indicate a complex process of melting the compound. The thesis of a two-stage melting mechanism of CsPbBr3 perovskite with an initial stage of fragmentation of the crystalline structure and subsequent dissolution of crystalline phase residues is proposed. It is reported that with increasing of the melt heating above a certain "critical" temperature (579-585 °C), its homogenization occurs, and the crystallization temperature is set at 540-550 °C for the heating/cooling rate of 1 ° C/min. and 538-543 °C for the rate of 5-10° C/min. All obtained data confirm the assumption of a two-step melting process of CsPbBr3 perovskite, and the relatively constant crystallization temperature after a critical point of overheating may also indicate a certain structure of the melt of the compound with short-range order in the arrangement of the structural units of the compound in the liquid phase.

Publisher

Yuriy Fedkovych Chernivtsi National University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3