Kinetic parameters of Cd0.85-xMnxZn0.15Te (x = 0.05-0.20) alloys melting and crystallization processes

Author:

Rusnak S. M.1,Matviy A. V.1,Kopach V. V.1,Kopach O. V.1,Shcherbak L. P.1,Fochuk P. M.1

Affiliation:

1. Yuriy Fedkovych Chernivtsi National University

Abstract

The kinetic parameters of melting and crystallization of Cd0.85-xMnxZn0.15Te (x = 0.05-0.20) alloys were investigated by the differential thermal analysis (DTA) method at different heating/cooling rates. Cd0.85-xMnxZn0.15Te alloys were synthesized from elementary materials in a vertical furnace with a high-gradient temperature that prevented the sublimation of the components. The DTA was carried out in an automatic system. The heating and cooling rates were 5 and 10°С/min, and the dwell time was 10, 30 and 60 minutes. The DTA were processed in two different ways. Using the first treatment method we found that the melt of the Cd0.80Mn0.05Zn0.15Te alloy crystallize with the supercooling, and it occurs at melt superheating higher than 12 °С. But the melt’s “negative” supercooling effect is present for alloy when the melt are superheated to 12 °C compared to the melting temperature of the alloy, which is evidence of two-phase alloy (solid phase - melt) at these temperatures. Also we determined that as the holding temperature increases the crystallization temperature decreases and the crystallization rate increases. We investigated that the area of the crystallization effect increases with increasing holding temperature. Concerning on the second treatment method we found the dependence of the solid-state volume fraction (φsolid state) versus the intermediate dwell temperature of the alloy during the heating process for Cd0.80Mn0.05Zn0.15Te. It shows that increasing of the melt-dwell temperature led to the melts full homogenization only near 1117 °C. Thus according to our previous researches we can say that the Cd1-x-уMnxZnyTe alloy’s melting temperature increases with ZnTe concentration increasing: ~1100-1102°С for Cd0.95-xMnxZn0.05Te alloys (x=0.05-0.30), ~1102-1104°С for Cd0.90-xMnxZn0.10Te alloys (x=0.05-0.30) and ~1116-1119°С for Cd0.80Mn0.05Zn0.15Te alloys.

Publisher

Yuriy Fedkovych Chernivtsi National University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3