SOME NOTICES ON ZEROS AND POLES OF MEROMORPHIC FUNCTIONS IN A UNIT DISK FROM THE CLASSES DEFINED BY THE ARBITRARY GROWTH MAJORANT

Author:

Sheparovych I.

Abstract

In [4] by the Fourier coefficients method there were obtained some necessary and sufficient conditions for the sequence of zeros $(\lambda_{\nu})$ of holomorphic in the unit disk $\{z:|z|<1\}$ functions $f$ from the class that determined by the majorant $\eta :[0;+\infty)\to [0;+\infty )$ that is an increasing function of arbitrary growth. Using that result in present paper it is proved that if $(\lambda_{\nu})$ is a sequence of zeros and $(\mu_ {j})$ is a sequence of poles of the meromorphic function $f$ in the unit disk, such that for some $A>0, B>0$ and for all $r\in(0;1):\ T(r;f)\leqslant A\eta\left(\frac B{1-|z|}\right)$, where $T(r;f):=m(r;f)+N(r;f);\ m(r;f)=\frac{1}{2\pi }\int\limits_0^{2\pi } \ln ^{+}|f(re^{i\varphi})|d\varphi$, then for some positive constants $A_1, A’_1, B_1, B’_1, A_2, B_2$ and for all $k \in\mathbb{N}$, $r,\ r_1$ from $(0;1)$, $r_2\in(r_1;1)$ and $\sigma\in(1;1/r_2)$ the next conditions hold $N (r,1/f) \leq A_1 \eta\left(\frac{B_1}{1-r}\right)$, $N(r,f)\leq A'_1\eta \left( \frac{B'_1}{1-r}\right) $, $$\frac1{2k}\left|\sum\limits_{r_1 <|\lambda_{\nu}|\leqslant r_{2}} \frac1{\lambda_{\nu}^k} -\sum\limits_{r_1 < |\mu_j|\leqslant r_2} \frac 1{\mu_j^{k}} \right| \leq \frac{A_{2}}{r_{1}^{k}}\eta\left(\frac{B_{2}}{1 -r_1}\right ) +\frac{A_{2}}{r_{2}^{k}}\max\left\{ 1;\frac 1{k\ln \sigma}\right\}\eta\left(\frac{B_{2}}{1 -\sigma r_{2}}\right)$$ It is also shown that if sequence $(\lambda_{\nu})$ satisfies the condition $N (r,1/f) \leq A_1 \eta\left(\frac{B_1}{1-r}\right)$ and $$\frac1{2k}\left|\sum\limits_{r_1 <|\lambda_{\nu}|\leqslant r_{2}} \frac1{\lambda_{\nu}^k} \right| \leq \frac{A_{2}}{r_{1}^{k}}\eta\left(\frac{B_{2}}{1-r_{1}}\right) +\frac{A_{2}}{r_{2}^{k}}\max\left\{ 1;\frac 1{k\ln \sigma}\right\}\eta\left(\frac{B_{2}}{1 -\sigma r_{2}}\right)$$ there is possible to construct a meromorphic function from the class $T(r;f)\leqslant \frac{A}{\sqrt{1-r}}\eta\left(\frac B{1-r}\right)$, for which the given sequence is a sequence of zeros or poles.

Publisher

Yuriy Fedkovych Chernivtsi National University

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3