Affiliation:
1. Drohobych Ivan Franko State Pedagogical University, Institute of Physics, Mathematics, Economics and Innovation Technologies
Abstract
Let $f$ be an entire function with $f(0)=1$, $(\lambda_n)_{n\in\mathbb N}$ be the sequence of its zeros, $n(t)=\sum_{|\lambda_n|\le t}1$, $N(r)=\int_0^r t^{-1}n(t)\, dt$, $r>0$, $h(\varphi)$ be the indicator of $f$, and $F(z)=zf'(z)/f(z)$, $z=re^{i\varphi}$. An entire function $f$ is called a function of improved regular growth if for some $\rho\in (0,+\infty)$ and $\rho_1\in (0,\rho)$, and a $2\pi$-periodic $\rho$-trigonometrically convex function $h(\varphi)\not\equiv -\infty$ there exists a set $U\subset\mathbb C$ contained in the union of disks with finite sum of radii and such that
\begin{equation*}
\log |{f(z)}|=|z|^\rho h(\varphi)+o(|z|^{\rho_1}),\quad U\not\ni z=re^{i\varphi}\to\infty.
\end{equation*}
In this paper, we prove that an entire function $f$ of order $\rho\in (0,+\infty)$ with zeros on a finite system of rays $\{z: \arg z=\psi_{j}\}$, $j\in\{1,\ldots,m\}$, $0\le\psi_1<\psi_2<\ldots<\psi_m<2\pi$, is a function of improved regular growth if and only if for some $\rho_3\in (0,\rho)$
\begin{equation*}
N(r)=c_0r^\rho+o(r^{\rho_3}),\quad r\to +\infty,\quad c_0\in [0,+\infty),
\end{equation*}
and for some $\rho_2\in (0,\rho)$ and any $q\in [1,+\infty)$, one has
\begin{equation*}
\left\{\frac{1}{2\pi}\int_0^{2\pi}\left|\frac{\Im F(re^{i\varphi})}{r^\rho}+h'(\varphi)\right|^q\, d\varphi\right\}^{1/q}=o(r^{\rho_2-\rho}),\quad r\to +\infty.
\end{equation*}
Publisher
Yuriy Fedkovych Chernivtsi National University
Subject
Computer Science Applications,History,Education
Reference20 articles.
1. [1] Bodnar O.V., Zabolots’kyi M.V. Criteria for the regularity of growth of the logarithm of modulus and the argument of an entire function. Ukr. Math. J. 2010, 62 (7), 1028–1039. doi: 10.1007/s11253-010-0411-x (translation of Ukr. Mat. Zh. 2010, 62 (7), 885–893. (in Ukrainian))
2. [2] Gol’dberg A.A. B.Ya. Levin is a creator of the theory of entire functions of completely regular growth. Mat. Fiz., Anal., Geom. 1994, 1 (2), 186–192. (in Russian)
3. [3] Chyzhykov I.E. Pfluger-type theorem for functions of refined regular growth. Mat. Stud. 2017, 47 (2), 169–178. doi:10.15330/ms.47.2.169-178
4. [4] Hirnyk M.O. Subharmonic functions of improved regular growth. Dopov. Nats. Akad. Nauk Ukr. 2009, 4, 13–18. doi:10.1007/s11253-012-0624-2 (in Ukrainian)
5. [5] Khats’ R.V. On entire functions of improved regular growth of integer order with zeros on a finite system of rays. Mat. Stud. 2006, 26 (1), 17–24.