Affiliation:
1. Ya. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of National Academy of Sciences of National Academy of Sciences of Ukraine
2. Ivan Franko National University of Lviv
Abstract
Given a topological ring R, we study semitopological R-modules, construct their completions, Bohr and borno modications. For every topological space X, we construct the free (semi)topological R-module over X and prove that for a k-space X its free semitopological R-module is a topological R-module. Also we construct a Tychono space X whose free semitopological R-module is not a topological R-module.
Publisher
Yuriy Fedkovych Chernivtsi National University
Subject
Computer Science Applications,History,Education
Reference11 articles.
1. Arhangel’skii A., Tkachenko M. Topological groups and related structures, Atlantis Studies in Mathematics, 1. Atlantis Press, Paris; World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008.
2. Banakh T.O., Maslyuchenko V.K., Ravsky A.V. Semitopological vector spaces, Math. Bull. Shevchenko Sci. Soc. 2016, 13, 84–89.
3. Bouziad A. Notes sur la propriete de Namioka, Trans. Amer. Math. Soc. 1994, 344(2), 873–883.
4. Cao J., Moors W. Separate and joint continuity of homomorphisms defined on topological groups, New Zealand J. Math. 2004, 33(1), 41–45.
5. Ebrahimi-Vishki Y.R. Joint continuity of separately continuous mappings on topological groups, Proc. Amer. Math. Soc. 1996, 124 (11) (1996), 3515–3518.