FUNCTORS AND SPACES IN IDEMPOTENT MATHEMATICS

Author:

Zarichnyi M.1

Affiliation:

1. Ivan Franko National University of Lviv, Lviv, Ukraine

Abstract

Idempotent mathematics is a branch of mathematics in which idempotent operations (for example, max) on the set of reals play a central role. In recent decades, we have seen intensive research in this direction. The principle of correspondence (this is an informal principle analogous to the Bohr correspondence principle in the quantum mechanics) asserts that each meaningful concept or result of traditional mathematics corresponds to a meaningful concept or result of idempotent mathematics. In particular, to the notion of probability measure there corresponds that if Maslov measure (also called idempotent measure) as well as more recent notion of max-min measure. Also, there are idempotent counterparts of the convex sets; these include the so-called max-plus and max min convex sets. Methods of idempotent mathematics are used in optimization problems, dynamic programming, mathematical economics, game theory, mathematical biology and other disciplines. In this paper we provide a survey of results that concern algebraic and geometric properties of the functors of idempotent and max-min measures.

Publisher

Yuriy Fedkovych Chernivtsi National University

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3