THE MAXIMUM PRINCIPLE FOR THE EQUATION OF LOCAL FLUCTUATIONS OF RIESZ GRAVITATIONAL FIELDS OF PURELY FRACTIONAL ORDER

Author:

Litovchenko V.

Abstract

The parabolic pseudodifferential equation with the Riesz fractional differentiation operator of α ∈ (0; 1) order, which acts on a spatial variable, is considered in the paper. This equation naturally summarizes the known equation of fractal diffusion of purely fractional order. It arises in the mathematical modeling of local vortices of nonstationary Riesz gravitational fields caused by moving objects, the interaction between the masses of which is characterized by the corresponding Riesz potential. The fundamental solution of the Cauchy problem for this equati- on is the density distribution of the probabilities of the force of local interaction between these objects, it belongs to the class of Polya distributions of symmetric stable random processes. Under certain conditions, for the coefficient of local field fluctuations, an analogue of the maximum principle was established for this equation. This principle is important in particular for substantiating the unity of the solution of the Cauchy problem on a time interval where the fluctuation coefficient is a non-decreasing function.

Publisher

Yuriy Fedkovych Chernivtsi National University

Subject

Computer Science Applications,History,Education

Reference33 articles.

1. [1] Applebaum D. Levy Processes and stochastic calculus Cambridge: Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511809781

2. [2] Bertoin J. Levy Processes, volume 121 of Cambridge Tracts in Mathematics Cambridge: Cambridge University Press, 1996.

3. [3] Blumenthal R.M., Getoor R.K. Some theorems on stable processes Trans. Amer. math. Soc. 1960, 95,263–273.

4. [4] Bucur C., Valdinoci E. Non-local diffusion and applications Lecture Notes of the Unione Matematica Italiana 20, Springer, 2016. DOI: 10.1007/978-3-319-28739-3

5. [5] Drin’ Ya.M. Investigation of a class of parabolic pseudo-differential operators on classes of Holder continuous functions Dopovidi AN Ukr. SSR, Ser. A 1974, No. 1, 19-22 (Ukrainian).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3