ADVANCED ALGORITHM OF EVOLUTION STRATEGIES OF COVARIATION MATRIX ADAPTATION

Author:

Litvinchuk Yu.,Malyk I.

Abstract

The paper considers the extension of the CMA-ES algorithm using mixtures of distributions for finding optimal hyperparameters of neural networks. Hyperparameter optimization, formulated as the optimization of the black box objective function, which is a necessary condition for automation and high performance of machine learning approaches. CMA-ES is an efficient optimization algorithm without derivatives, one of the alternatives in the combination of hyperparameter optimization methods. The developed algorithm is based on the assumption of a multi-peak density distribution of the parameters of complex systems. Compared to other optimization methods, CMA-ES is computationally inexpensive and supports parallel computations. Research results show that CMA-ES can be competitive, especially in the concurrent assessment mode. However, a much broader and more detailed comparison is still needed, which will include more test tasks and various modifications, such as adding constraints. Based on the Monte Carlo method, it was shown that the new algorithm will improve the search for optimal hyperparameters by an average of 12%.

Publisher

Yuriy Fedkovych Chernivtsi National University

Subject

Computer Science Applications,History,Education

Reference19 articles.

1. [1] Bergstra J., Bengio Y. Random search for hyper-parameter optimization. JMLR, 13:281–305, 2012.

2. [2] Snoek J., Rippel O., Swersky K., Kiros R., Satish N., Sundaram N., Patwary M., Ali M., Adams R., et al. Scalable bayesian optimization using deep neural networks. arXiv preprint arXiv:1502.05700, 2015

3. [3] Eggensperger K., Feurer M., Hutter F., Bergstra J., Snoek J., Hoos H., and Leyton-Brown K. Towards an empirical foundation for assessing Bayesian optimization of hyperparameters. In NIPS workshop on Bayesian Optimization in Theory and Practice. - 2013.- 5p.

4. [4] Venkatesan D., Kannan K., Saravanan R. A genetic algorithm-based artificial neural network model for the optimization of machining processes. Neural Computing and Applications. - February 2009.- 7p.

5. [5] Beyer H.-G. The Theory of Evolution Strategies. - Springer; 2001st edition (March 27, 2001).- 401p.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3