1. [1] Bergstra J., Bengio Y. Random search for hyper-parameter optimization. JMLR, 13:281–305, 2012.
2. [2] Snoek J., Rippel O., Swersky K., Kiros R., Satish N., Sundaram N., Patwary M., Ali M., Adams R., et al. Scalable bayesian optimization using deep neural networks. arXiv preprint arXiv:1502.05700, 2015
3. [3] Eggensperger K., Feurer M., Hutter F., Bergstra J., Snoek J., Hoos H., and Leyton-Brown K. Towards an empirical foundation for assessing Bayesian optimization of hyperparameters. In NIPS workshop on Bayesian Optimization in Theory and Practice. - 2013.- 5p.
4. [4] Venkatesan D., Kannan K., Saravanan R. A genetic algorithm-based artificial neural network model for the optimization of machining processes. Neural Computing and Applications. - February 2009.- 7p.
5. [5] Beyer H.-G. The Theory of Evolution Strategies. - Springer; 2001st edition (March 27, 2001).- 401p.