Abstract
For a regularly converging in ${\Bbb C}$ series $F_{\varrho}(z)=\sum\limits_{n=1}^{\infty} a_n E_{\varrho}(\lambda_nz)$, where
$0<\varrho<+\infty$ and $E_{\varrho}(z)=\sum\limits_{k=0}^{\infty}\frac{z^k}{\Gamma(1+k/\varrho)}$
is the Mittag-Leffler function, it is investigated the asymptotic behavior of the function $E_{\varrho}^{-1} (M_{F_{\varrho}}(r))$, where $M_f(r)=\max\{|f(z)|:\,|z|=r\}$. For example, it is proved that if $\varlimsup\limits_{n\to \infty}\frac{\ln\,\ln\,n}{\ln\,\lambda_n}\le \varrho$ and $a_n\ge 0$ for all $n\ge 1$, then $\varlimsup\limits_{r\to+\infty}\frac{\ln\,E^{-1}_{\varrho}(M_{F_{\varrho}}(r))}{\ln\,r}=\frac{1}{1-\overline{\gamma}\varrho}$, where
$\overline{\gamma}=\varlimsup\limits_{n\to\infty}\frac{\ln\,\lambda_n}{\ln\,\ln\,(1/a_n)}$.
A similar result is obtained for the Laplace-Stiltjes type integral $I_{\varrho}(r) = \int\limits_{0}^{\infty}a(x)E_{\varrho}(r x) d F(x)$.
Publisher
Yuriy Fedkovych Chernivtsi National University
Subject
Computer Science Applications,History,Education
Reference12 articles.
1. [1] Nachbin L. An extension of the notion of integral function of the finite exponential type. Arias Acad. Sci. Brazil. Ciuncias, 1944, 16, 143-147.
2. [2] Boas R. P., Buck R. C. Polynomial expansions of analytic functions. Springer, Berlin, 1958.
3. [3] Vinnitsky B. V. Some approximation properties of generalized systems of exponentials. Dep. in UkrNIINTI 25.02.1991, Drohobych, 1991. (in Russian)
4. [4] Roy Ch. On the relative order and lower order of an entire functiion. Bull. Soc. Cal. Math. Soc., 2010, 102 (1), 17-26.
5. [5] Mulyava O. M., Sheremeta M. M. Relative growth of Dirichlet series with different abscissas of absolute convergence. Ukr. Math. Journal, 2020, 72 (12), 1535-1543.