Abstract
For the generating function $$
G_n(\mathbi{x},\mathbi{t})=\sum_{\lambda} \mathbi{s}_{\lambda}(x_1,x_2,\ldots, x_n) t_1^{\lambda_1 } t_2^{\lambda_2 } \cdots t_n^{\lambda_n},
$$ where the Sсhur polynomials $\mathbi{s}_{\lambda}(x_1,x_2,\ldots, x_n) $ are indexed by partitions $ \lambda $ of length no more than $ n $ the explicit form for $ n = 2,3 $ is calculated and a recurrent relation for an arbitrary $ n $ is found. It is proved that $ G_n (\mathbi {x}, \mathbi {t}) $ is a rational function
$$G_n(\boldsymbol{x}, \boldsymbol{t})=\frac{P(\boldsymbol{x}, \boldsymbol{t})}{Q(\boldsymbol{x}, \boldsymbol{t})},$$
the numerator and denominator of which belong to the kernel of the differential operator
$$
\mathcal{D}_n=\sum_{i=1}^n x_i \frac{\partial}{\partial x_i}- \sum_{i=1}^n t_i \frac{\partial}{\partial t_i}.
$$
For the numerator $ P (\boldsymbol {x}, \boldsymbol {t}) $ we find its specialization at $ t_1 = t_2 = \cdots = t_n = 1. $
Publisher
Yuriy Fedkovych Chernivtsi National University
Subject
Computer Science Applications,History,Education
Reference9 articles.
1. [1] Baclawski K. Character generators for unitary and symplectic groups. Journal of Mathematical Physics 1983,24, 1688. doi: 10.1063/1.525912
2. [2] Fulton W., Harris, J. Representation theory: a first course. Graduate texts in mathematics, 129, Springer, 2004.
3. [3] Littlewood D. The Theory of Group Characters and Matrix Representations of Groups. Oxford University Press, New York, 1940.
4. [4] Macdonald I. Symmetric Functions and Hall Polynomials. Clarendon Press, 1998.
5. [5] Nunez J. F., Fuertes W. G., Perelomov А. On an approach for computing the generating functions of the characters of simple Lie algebras. Journal of Physics A-Mathematical And Theoretical 2014, 47, 145202. doi:10.1088/1751-8113/47/14/145202