Implicaciones operativas de la resolución espacial de imágenes de drones en el mapeo de la vegetación para el manejo forestal

Author:

Ordóñez-Prado Casimiro,Valdez-Lazalde José René,Flores-Magdaleno Héctor,Ángeles-Pérez Gregorio,Santos-Posadas Héctor M. de los,Buendía-Rodríguez Enrique

Abstract

Introducción. Los drones aportan imágenes de alta resolución espacial para el seguimiento de la dinámica de la vegetación en bosques bajo manejo forestal; sin embargo, existen dudas sobre la forma más eficaz de utilizarlas con respecto a la resolución espacial. Objetivo. Determinar la resolución espacial más apropiada de las imágenes multiespectrales obtenidas por drones, para mapear los tipos de cobertura del suelo en bosques templados bajo manejo forestal de Hidalgo, México. Materiales  y  métodos.  Las  imágenes  espectrales  se  preprocesaron  en  resoluciones  espaciales  desde 0.2 hasta 2.5 m, a intervalos de 0.1 m. La cobertura de pinos, encinos, otras latifoliadas, herbáceas y suelo desnudo se clasificaron con el algoritmo Random Forest. El efecto de la resolución espacial en la clasificación de la cobertura terrestre se evaluó mediante la prueba no paramétrica de Kruskal-Wallis seguida de una comparación post-hoc Mann-Whitney-Wilcoxon (P < 0.05). Los errores de clasificación de las clases de cobertura se analizaron gráficamente. Resultados. Las imágenes de 0.2 m de resolución espacial proporcionaron la mayor precisión de clasificación de la cobertura del suelo (96 %), pero fue estadísticamente similar que la de 0.7 m (P = 0.3984). La precisión más baja (82 %) se obtuvo con imágenes de 2.5 m de resolución espacial. Los errores de omisión y comisión fueron menores y constantes en las clasificaciones con imágenes de resolución espacial de 0.2 a 1.2 m. Conclusión. Las imágenes multiespectrales (0.7 m de resolución), adquiridas con un dron de ala fija, permitieron la clasificación precisa de los tipos de cobertura y la distribución espacial exacta de pinos, encinos y otras especies de latifoliadas de un bosque templado bajo manejo forestal.

Publisher

Universidad Autonoma Chapingo

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3