Modelado espacial y temporal de contaminantes atmosféricos en la Zona Metropolitana de la Ciudad de México

Author:

Cruz-Huerta CarminaORCID,Martínez-Trinidad TomásORCID,Correa-Díaz ArianORCID,Gómez-Guerrero ArmandoORCID,Vargas-Hernández J. JesúsORCID,Villanueva-Díaz JoséORCID,Beramendi-Orosco Laura E.ORCID

Abstract

Introducción: Las grandes ciudades presentan problemas de contaminación atmosférica por la emisión de gases contaminantes y material particulado (PM).Objetivos: Conocer la variación intra e interanual de los contaminantes (NOX, CO, O3, PM10 y PM2.5) en la Zona Metropolitana de la Ciudad de México y modelar su distribución espacial.Materiales y métodos: Se analizaron los datos de 44 estaciones de la Red Automática de Monitoreo Atmosférico (RAMA) para extraer información de los contaminantes NOX, O3 y CO en el periodo 1986-2021, y PM2.5 y PM10 en los periodos 2000-2021 y 2003-2021, respectivamente. Se calcularon promedios mensuales por estación y se evaluó la tendencia temporal de cada contaminante mediante el operador ‘Theil-Sen’. También se modeló la distribución espacial de los contaminantes y se comparó el desempeño estadístico de cuatro métodos de interpolación: Redes neuronales, Support Vector Machine, Random Forest y Kriging Universal.Resultados y discusión: Las concentraciones de NOX y CO fueron altas en noviembre-enero, mientras que las de O3 en abril-mayo. Las concentraciones más bajas de PM10 y PM2.5 ocurrieron en julio-octubre y las máximas en mayo. Todos los contaminantes disminuyeron su concentración durante el periodo analizado, con cambios más notorios en NOX (-1.28 ppb·año-1) , mientras que CO fue el de menor cambio (-0.12 ppm·año-1). Los valores máximos de NOX, O3 y CO se presentaron en 1993 y de PM en 2003. El mejor modelo fue Support Vector Machine, independientemente del contaminante analizado.Conclusión: La dinámica espaciotemporal varió entre los contaminantes atmosféricos. El análisis con métodos de interpolación espacial es factible y favorece estrategias de solución a los problemas de contaminación.

Publisher

Universidad Autonoma Chapingo

Subject

Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3