Simulation of the movement of the supporting leg of an exoskeleton with two links of variable length in 3D

Author:

Blinov Alexander О.ORCID, ,Borisov Andrey V.ORCID,Konchina Larisa V.ORCID,Kulikova Marina G.ORCID,Maslova Ksenia S.ORCID, , , , , ,

Abstract

A two-link model of exoskeleton with variable-length links for supporting the lower limbs of the human musculoskeletal system is proposed in the article. The researched model differs from the existing ones by the variable-length links, and by the angle calculation method. While in the existing models, the angles are calculated from the regular direction – from vertical, or from horizontal, – in the proposed research they are calculated between the links. As for practical exoskeleton implementation, the proposed method of angle calculation is appropriate to the actual working conditions of the electrical motors with the reduction gears installed in the hinges, which change the angles between the links. The construction of a variable-length exoskeleton link consists of two absolutely solid weighty sections located at both ends of the link and one weightless section between them in the center of the link. In the weightless section, there is a drive that creates a control longitudinal force, which realizes the increase or decrease in the length of the link in the required manner and provides the necessary maintenance of the length of the link when the person moves in the exoskeleton. The links are connected to each other using spherical hinges. Drives are installed in each hinge, creating control torques, which provide a relative rotational movement of the links. The jointly controlling longitudinal forces and moments realize the maintenance of the posture or the movement of the link in the required manner and, in relation to the exoskeleton, the repetition of the basic biomechanical properties of the human musculoskeletal system. The mathematical model in the form of the system of Lagrange differential equations of the second kind is obtained. The obtained mathematical model is examined for existence and uniqueness of the Cauchy solution. The kinematic trajectory of the link motion has been synthesized, which simulates the anthropomorphic movement of the supporting leg during the single-support phase of movement, and the control actions required for its implementation has been found. The significance of the results obtained in the process of modeling lies in the ability to create active exoskeletons, prostheses in medicine, anthropomorphic robots, and spacesuits that take into account the biomechanical features of the functioning of the human musculoskeletal system.

Publisher

Moscow University for Industry and Finance - Synergy

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exoskeleton Dynamics Simulation with the System of Three Variable-Length Links of Adjustable Stiffness;Известия Российской академии наук. Механика твердого тела;2024-08-29

2. Exoskeleton Dynamics Simulation with the System of Three Variable-Length Links of Adjustable Stiffness;Mechanics of Solids;2024-02

3. Electromechanical model of exoskeleton with three mobile links;International Journal of Biosensors & Bioelectronics;2023-05-04

4. Issues emerging in human musculoskeletal system simulation with mechanical and electromechanical rod structures;Power engineering: research, equipment, technology;2022-12-09

5. Formation of a Mechanism-Adaptive Setting Trajectory for the Movement of the Characteristic Point of an Industrial Robot Gripper;2022 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM);2022-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3