An intelligent model for managing the risks of violation of the characteristics of electromechanical devices in a multi-stage system for processing ore raw materials

Author:

Puchkov Andrey Yu.ORCID, ,Dli Maxim I.ORCID,Prokimnov Nikolay N.ORCID,Sokolov Andrey M.ORCID, , ,

Abstract

The results of studies on the development of the structure of an intelligent model for managing the risks of violation of the characteristics of electromechanical devices in a multi-stage system for processing ore raw materials are presented. Such devices are involved in all cycles of the technological process, so the assessment of this risk for them is an urgent task. A method for assessing such risks is proposed, which is based on the assessment of the useful life of equipment, performed on the basis of the prediction of characteristics by a deep recurrent neural network, with further generalization of the results of such an assessment in a fuzzy inference block. Recurrent neural networks with long short-term memory were used, which are one of the most powerful tools for solving time series regression problems, including predicting their values for long intervals. The use of deep neural networks to predict the characteristics of electromechanical devices made it possible to obtain a high prediction accuracy, which made it possible to apply a relatively less accurate recurrent least squares method for the iterative process of estimating the useful life of equipment. This approach made it possible to build a computational evaluation process with its constant refinement as new results of measurements of the characteristics of electromechanical devices become available. The results of a model experiment with a software implementation of the proposed method, performed in the MatLab 2021a environment, are presented, which showed the consistency of the program modules and obtaining a risk assessment result that is consistent with the expected dynamics of its change.

Publisher

Moscow University for Industry and Finance - Synergy

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3