Affiliation:
1. Sagar Institute of Research and Technology
2. Department of Pharmaceutics, VNS Group of Institutions
Abstract
The present study aimed to enhance the dissolution rate, therefore bioavailability, of famotidine (FMT) using its solid dispersions (SDs) with polyvinyl pyrrolidone (PVP)-K 30, milk powder, and inulin, both in-vitro and in-vivo. The study was also aimed to compare the effect of different amorphous polymers in enhancing the dissolution rate of FMT. The SDs were prepared with a 1:4 weight ratio by a solvent evaporation technique. Evaluation of the properties of the SDs was performed using dissolution, Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) studies. The SDs of FMT exhibited an enhanced dissolution rate. The FTIR spectroscopic studies showed the stability of FMT and the absence of well-defined drug excipient interaction. The XRD studies indicated the amorphous state of FMT in SDs. The drug release rate of all SDs formulation was found to be greater than the pure drug. Within one hour of dissolution studies, 99.43%, 92.5%, and 58.93% drug release were obtained, respectively, for PVP K-30, milk powder, and inulin. The first two were showing significantly higher release. SDs were also studied for bioavailability studies in-vivo in rats, which confirms that the SDs prepared by PVP K-30 and milk powder significantly enhancing the bioavailability of FMT. The maximum concentration of 15.05±2.45 μg/ml was achieved in 2 hours, and the area under the curve was found to be 33.78±7.3 μg. hour/ml. Therefore, the study results conclude that SDs of the FMT prepared by PVP K-30 successfully increases the dissolution and in-vivo bioavailability.
Keywords – Solid dispersion, Second generation solid dispersions, Famotidine, In-vivo bioavailability, amorphous polymers, dissolution enhancement, solubility enhancement.
Publisher
Pharmaceutical and Healthcare Sciences Society (PHSS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献