Voltage modulates halothane-triggered Ca2+ release in malignant hyperthermia-susceptible muscle

Author:

Zullo Alberto123,Textor Martin1,Elischer Philipp1,Mall Stefan1,Alt Andreas4,Klingler Werner56,Melzer Werner1ORCID

Affiliation:

1. Institute of Applied Physiology, Ulm University, Ulm, Germany

2. CEINGE - Biotecnologie Avanzate, Napoli, Italy

3. Department of Sciences and Technologies, University of Sannio, Benevento, Italy

4. Institute of Legal Medicine, Ulm University, Ulm, Germany

5. Department of Neuroanaesthesiology, Ulm University, Günzburg, Germany

6. Queensland University of Technology, Brisbane, Australia

Abstract

Malignant hyperthermia (MH) is a fatal hypermetabolic state that may occur during general anesthesia in susceptible individuals. It is often caused by mutations in the ryanodine receptor RyR1 that favor drug-induced release of Ca2+ from the sarcoplasmic reticulum. Here, knowing that membrane depolarization triggers Ca2+ release in normal muscle function, we study the cross-influence of membrane potential and anesthetic drugs on Ca2+ release. We used short single muscle fibers of knock-in mice heterozygous for the RyR1 mutation Y524S combined with microfluorimetry to measure intracellular Ca2+ signals. Halothane, a volatile anesthetic used in contracture testing for MH susceptibility, was equilibrated with the solution superfusing the cells by means of a vaporizer system. In the range 0.2 to 3%, the drug causes significantly larger elevations of free myoplasmic [Ca2+] in mutant (YS) compared with wild-type (WT) fibers. Action potential–induced Ca2+ signals exhibit a slowing of their time course of relaxation that can be attributed to a component of delayed Ca2+ release turnoff. In further experiments, we applied halothane to single fibers that were voltage-clamped using two intracellular microelectrodes and studied the effect of small (10-mV) deviations from the holding potential (−80 mV). Untreated WT fibers show essentially no changes in [Ca2+], whereas the Ca2+ level of YS fibers increases and decreases on depolarization and hyperpolarization, respectively. The drug causes a significant enhancement of this response. Depolarizing pulses reveal a substantial negative shift in the voltage dependence of activation of Ca2+ release. This behavior likely results from the allosteric coupling between RyR1 and its transverse tubular voltage sensor. We conclude that the binding of halothane to RyR1 alters the voltage dependence of Ca2+ release in MH-susceptible muscle fibers such that the resting membrane potential becomes a decisive factor for the efficiency of the drug to trigger Ca2+ release.

Funder

Ulm University

Deutsche Forschungsgemeinschaft

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3