Small Ca2+ releases enable hour-long high-frequency contractions in midshipman swimbladder muscle

Author:

Nelson Frank E.123ORCID,Hollingworth Stephen4ORCID,Marx James O.5ORCID,Baylor Stephen M.4ORCID,Rome Lawrence C.12ORCID

Affiliation:

1. Department of Biology, University of Pennsylvania, Philadelphia, PA

2. The Whitman Center, Marine Biological Laboratory, Woods Hole, MA

3. Department of Biology, Temple University, Philadelphia, PA

4. Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA

5. Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA

Abstract

Type I males of the Pacific midshipman fish (Porichthys notatus) vibrate their swimbladder to generate mating calls, or “hums,” that attract females to their nests. In contrast to the intermittent calls produced by male Atlantic toadfish (Opsanus tau), which occur with a duty cycle (calling time divided by total time) of only 3–8%, midshipman can call continuously for up to an hour. With 100% duty cycles and frequencies of 50–100 Hz (15°C), the superfast muscle fibers that surround the midshipman swimbladder may contract and relax as many as 360,000 times in 1 h. The energy for this activity is supported by a large volume of densely packed mitochondria that are found in the peripheral and central regions of the fiber. The remaining fiber cross section contains contractile filaments and a well-developed network of sarcoplasmic reticulum (SR) and triadic junctions. Here, to understand quantitatively how Ca2+ is managed by midshipman fibers during calling, we measure (a) the Ca2+ pumping-versus-pCa and force-versus-pCa relations in skinned fiber bundles and (b) changes in myoplasmic free [Ca2+] (Δ[Ca2+]) during stimulated activity of individual fibers microinjected with the Ca2+ indicators Mag-fluo-4 and Fluo-4. As in toadfish, the force–pCa relation in midshipman is strongly right-shifted relative to the Ca2+ pumping–pCa relation, and contractile activity is controlled in a synchronous, not asynchronous, fashion during electrical stimulation. SR Ca2+ release per action potential is, however, approximately eightfold smaller in midshipman than in toadfish. Midshipman fibers have a larger time-averaged free [Ca2+] during activity than toadfish fibers, which permits faster Ca2+ pumping because the Ca2+ pumps work closer to their maximum rate. Even with midshipman’s sustained release and pumping of Ca2+, however, the Ca2+ energy cost of calling (per kilogram wet weight) is less than twofold more in midshipman than in toadfish.

Funder

National Science Foundation

Publisher

Rockefeller University Press

Subject

Physiology

Reference31 articles.

1. Quantitation of Ca ATPase, feet and mitochondria in superfast muscle fibres from the toadfish, Opsanus tau;Appelt;J. Muscle Res. Cell Motil.,1991

2. Sound-generating (sonic) motor system in a teleost fish (Porichthys notatus): Sexual polymorphism in the ultrastructure of myofibrils;Bass;J. Comp. Neurol.,1989

3. Complementary explanations for existing phenotypes in an acoustic communication system;Bass,1999

4. Comparative neurobiology of sound production in fishes;Bass,2015

5. Sarcoplasmic reticulum calcium release compared in slow-twitch and fast-twitch fibres of mouse muscle;Baylor;J. Physiol.,2003

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3