Affiliation:
1. Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada
Abstract
P-glycoprotein (P-gp) exports a broad range of dissimilar compounds, including drugs, lipids, and lipid-like molecules. Because of its substrate promiscuity, P-gp is a key player in the development of cancer multidrug resistance. Although P-gp is one of the most studied ABC transporters, the mechanism by which its substrates access the cavity remains unclear. In this study, we perform coarse-grained molecular dynamics simulations to explore possible lipid access pathways in the inward-facing conformation of P-gp embedded in bilayers of different lipid compositions. In the inward-facing orientation, only lipids from the lower leaflet access the cavity of the transporter. We identify positively charged residues at the portals of P-gp that favor lipid entrance to the cavity, as well as lipid-binding sites at the portals and within the cavity, which is in good agreement with previous experimental studies. This work includes several examples of lipid pathways for phosphatidylcholine and phosphatidylethanolamine lipids that help elucidate the molecular mechanism of lipid binding in P-gp.
Funder
Canadian Institutes of Health Research
Alberta Innovates - Health Solutions
Alberta Innovates - Technology Futures
Canadian Institutes for Health Research
Canada Foundation for Innovation
Canada Research Chairs
Publisher
Rockefeller University Press
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献