The N terminus of α-ENaC mediates ENaC cleavage and activation by furin

Author:

Kota Pradeep1ORCID,Gentzsch Martina12ORCID,Dang Yan L.1ORCID,Boucher Richard C.1,Stutts M. Jackson1ORCID

Affiliation:

1. Marsico Lung Institute, Cystic Fibrosis Center and Department of Medicine, University of North Carolina, Chapel Hill, NC

2. Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC

Abstract

Epithelial Na+ channels comprise three homologous subunits (α, β, and γ) that are regulated by alternative splicing and proteolytic cleavage. Here, we determine the basis of the reduced Na+ current (INa) that results from expression of a previously identified, naturally occurring splice variant of the α subunit (α-ENaC), in which residues 34–82 are deleted (αΔ34–82). αΔ34–82-ENaC expression with WT β and γ subunits in Xenopus oocytes produces reduced basal INa, which can largely be recovered by exogenous trypsin. With this αΔ34–82-containing ENaC, both α and γ subunits display decreased cleavage fragments, consistent with reduced processing by furin or furin-like convertases. Data using MTSET modification of a cysteine, introduced into the degenerin locus in β-ENaC, suggest that the reduced INa of αΔ34–82-ENaC arises from an increased population of uncleaved, near-silent ENaC, rather than from a reduced open probability spread uniformly across all channels. After treatment with brefeldin A to disrupt anterograde trafficking of channel subunits, INa in oocytes expressing αΔ34–82-ENaC is reestablished more slowly than that in oocytes expressing WT ENaC. Overnight or acute incubation of oocytes expressing WT ENaC in the pore blocker amiloride increases basal ENaC proteolytic stimulation, consistent with relief of Na+ feedback inhibition. These responses are reduced in oocytes expressing αΔ34–82-ENaC. We conclude that the α-ENaC N terminus mediates interactions that govern the delivery of cleaved and uncleaved ENaC populations to the oocyte membrane.

Funder

Cystic Fibrosis Foundation

National Heart, Lung, and Blood Institute

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proteolytic Activation of the Epithelial Sodium Channel (ENaC): Its Mechanisms and Implications;International Journal of Molecular Sciences;2023-12-16

2. Kidney ion handling genes and their interaction in blood pressure control;Bioscience Reports;2022-11

3. Physiology and pathophysiology of human airway mucus;Physiological Reviews;2022-10-01

4. SARS-CoV-2 furin cleavage site was not engineered;Proceedings of the National Academy of Sciences;2022-09-29

5. Dynamics of racial disparities in all-cause mortality during the COVID-19 pandemic;Proceedings of the National Academy of Sciences;2022-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3