TEMPERATURE ACTIVATION OF THE UREASE-UREA SYSTEM USING CRUDE AND CRYSTALLINE UREASE

Author:

Sizer Irwin W.1

Affiliation:

1. From the Laboratory of Physiology and Biochemistry, Massachusetts Institute of Technology, Cambridge

Abstract

1. The hydrolysis of urea catalyzed by jack bean meal has been followed by determining colorimetrically after Nesslerization the ammonia nitrogen, and volumetrically the carbon dioxide liberated at successive intervals during the reaction. During the early part of hydrolysis the rate of ammonia or carbon dioxide liberation is constant for all the urease solutions which were used. 2. When log rate of NH3 or CO2 formation was plotted against 1/T, the points fell along a straight line, the slope of which corresponded to an activation energy of either 8,700 or 11,700 calories per gram mol. Frequently urease, when dissolved in sulfite solution, was characterized by an activation energy of 11,700 below and 8,700 above the critical temperature of about 23°C. At high temperatures the plotted points fell off from the curve due to temperature inactivation. 3. Essentially the same results on temperature activation were obtained with crude jack bean meal, Arlco urease, crystalline urease not recrystallized, and crystalline urease once recrystallized. The temperature characteristic which was obtained depended in part upon the composition of the medium. When dissolved in water, or aqueous solutions of glycerine, KCN, Na2S2O2, cystine, Na2SO4, and K4Fe(CN)6, the temperature characteristic or µ of urease is 8,700. On the other hand, when urease is dissolved in solutions of K3Fe(CN)6 or H2O2 the µ value is 11,700. When dissolved in a solution containing Na2SO3 and NaHSO3 the µ value may be either 8,700 or 11,700 over the whole temperature range, or 11,700 below and 8,700 above 23°C. 4. When crystalline urease is dissolved in varying mixtures of K4Fe(CN)6 and K3Fe(CN)6, the temperature characteristic depends upon the oxidation-reduction potential of the digest. When Eh is greater than +0.46 volt µ = 11,700, when less than +0.42 volt µ = 8,700, when between +0.42 – +0.46 µ = 11,700 below and 8,700 above the critical temperature. 5. It is suggested that in reducing or in indifferent solutions the configuration of the urease molecule (as determined especially by SH groups present) is such that the activation energy is 8,700 calories. In oxidizing solutions the urease molecule has been so altered (perhaps by the oxidation of the SH groups) as to be partly inactivated and now has an activation energy of 11,700. Such changes in the urease molecule are reversible (unless oxidation has proceeded too far) and are accompanied by a corresponding change in the activation energy.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Commonly found bacteria and drug-resistant gene in wastewater;Antimicrobial Resistance in Wastewater and Human Health;2023

2. Kinetics of Biological Reactions with Special Reference to Enzymic Processes;Advances in Enzymology - and Related Areas of Molecular Biology;2006-11-22

3. Effects of Temperature on Enzyme Kinetics;Advances in Enzymology - and Related Areas of Molecular Biology;2006-11-22

4. Immiscible organic solvent inactivation of urease, chymotrypsin, lipase, and ribonuclease: Separation of dissolved solvent and interfacial effects;Biotechnology and Bioengineering;1994-12

5. EFFECTS OF CATECHOL AND P-BENZOQUINONE ON THE HYDROLYSIS OF UREA AND ENERGY BARRIERS OF UREASE ACTIVITY IN SOILS;Canadian Journal of Soil Science;1984-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3