CO2-stimulated NaCl absorption in the mouse renal cortical thick ascending limb of Henle. Evidence for synchronous Na +/H+ and Cl-/HCO3- exchange in apical plasma membranes.

Author:

Friedman P A,Andreoli T E

Abstract

These experiments evaluated salt transport processes in isolated cortical thick limbs of Henle (cTALH) obtained from mouse kidney. When the external solutions consisted of Krebs-Ringer bicarbonate (KRB), pH 7.4, and a 95% O2-5% CO2 gas phase, the spontaneous transepithelial voltage (Ve, mV, lumen-to-bath) was approximately mV; the net rate of Cl- absorption (JnetCl) was approximately 3,600 pmols s-1 cm-2; the net rate of osmotic solute absorption Jnetosm was twice JnetCl; and the net rate of total CO2 transport (JnetCO2) was indistinguishable from zero. Thus, net Cl- absorption was accompanied by the net absorption of a monovalent cation, presumably Na+, and net HCO3- absorption was negligible. This salt transport process was stimulated by (CO2 + HCO3-): omission of CO2 from the gas phase and HCO3- from external solutions reduced JnetCl, Jnetosm, and Ve by 50%. Furthermore, 10(-4) M luminal furosemide abolished JnetCl and Ve entirely. The lipophilic carbonic anhydrase inhibitor ethoxzolamide (10(-4) M, either luminal or peritubular) inhibited (CO2 + HCO3-)-stimulated JnetCl, Jnetosm, and Ve by approximately 50%; however, when the combination (CO2 + HCO3-) was absent, ethoxzolamide had no detectable effect on salt transport. Ve was reduced or abolished entirely by omission of either Na+ or Cl- from external solutions, by peritubular K+ removal, by 10(-3) M peritubular ouabain, and by 10(-4) M luminal SITS. However, Ve was unaffected by 10(-3) M peritubular SITS, or by the hydrophilic carbonic anhydrase inhibitor acetazolamide (2.2 x 10(-4) M, lumen plus bath). We interpret these data to indicate that (CO2 + HCO3-)-stimulated NaCl absorption in the cTALH involved two synchronous apical membrane antiport processes: one exchanging luminal Na+ for cellular H+; and the other exchanging luminal Cl- for cellular HCO3- or OH-, operating in parallel with a (CO2+ HCO3-)-independent apical membrane NaCl cotransport mechanism.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Medullary and cortical thick ascending limb: similarities and differences;American Journal of Physiology-Renal Physiology;2020-02-01

2. Mouse Slc4a11 expressed in Xenopus oocytes is an ideally selective H+/OH− conductance pathway that is stimulated by rises in intracellular and extracellular pH;American Journal of Physiology-Cell Physiology;2016-12-01

3. Sodium Chloride Transport in the Loop of Henle, Distal Convoluted Tubule, and Collecting Duct;Seldin and Giebisch's The Kidney;2013

4. TheDrosophilaNKCC Ncc69 is required for normal renal tubule function;American Journal of Physiology-Cell Physiology;2012-10-15

5. Ion and Water Transport across the Blood–Brain Barrier;Physiology and Pathology of Chloride Transporters and Channels in the Nervous System;2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3