Residual force enhancement after stretch of contracting frog single muscle fibers.

Author:

Edman K A,Elzinga G,Noble M I

Abstract

Single fibers from the tibialis anterior muscle of Rana temporaria at 0.8-3.8 degrees C were subjected to long tetani lasting up to 8 s. Stretch of the fiber early in the tetanus caused an enhancement of force above the isometric control level which decayed only slowly and stayed higher throughout the contraction. This residual enhancement was uninfluenced by velocity of stretch and occurred only on the descending limb of the length-tension curve. The absolute magnitude of the effect increased with sarcomere length to a maximum at approximately 2.9 micrometers and then declined. The phenomenon was further characterized by its dependence on the amplitude of stretch. The final force level reached after stretch was usually higher than the isometric force level corresponding to the starting length of the stretch. The possibility that the phenomenon was caused by nonuniformity of sarcomere length along the fiber was examined by (a) laser diffraction studies that showed sarcomere stretch at all locations and (b) studies of 9-10 segments of approximately 0.6-0.7 mm along the entire fiber, which all elongated during stretch. Length-clamped segments showed residual force enhancement after stretch when compared with the tetanus produced by the same segment held at the short length as well as at the long length. It is concluded that residual force enhancement after stretch is a property shown by all individual segments along the fiber.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 310 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3