Increase in PNa and PK of Cultured Heart Cells Produced by Veratridine

Author:

Sperelakis Nick1,Pappano Achilles J.1

Affiliation:

1. From the Department of Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22903

Abstract

Noninnervated cultured chick embryonic heart cells are depolarized by veratridine (10-5 10-6 g/ml) within a few minutes to membrane potentials of -12 ± 2 mv. Action potentials and beating cease. Before depolarization begins, the repolarizing phase of the action potential is prolonged and leads to a long-lasting depolarizing afterpotential, probably due to a holding open of Na+ channels. There is no direct effect on automaticity. Maximum rate of rise of the action potential decreases as a function of the depolarization. The inexcitability is transiently reversed by repolarizing current pulses and by 5 mM Ba++ (but not Sr++) which increases membrane resistance (Rm) and produces a small transient repolarization. Cocaine does not reverse the depolarization. The depolarization also occurs in Cl--free Ringer and in Na+-free Li+-Ringer, but not in Na+-free sucrose-Ringer. In most cases, Rm, measured in the presence and absence of Cl-, initially decreases but sometimes increases. Some of the decrease or increase in gK may be indirectly produced by anomalous or delayed rectification, respectively. Tetrodotoxin, although having no effect on the action potential magnitude or rate of rise, prevents the depolarizing action of veratridine but not its effect on decreasing Rm. It is concluded that veratridine depolarizes by increasing the resting Na+ permeability (PNa); it also tends to increase PK, but this action may be obscured by anomalous rectification when Em is allowed to change. The equilibrium potential for veratridine action is about halfway between ENa and EK, similar to that of acetylcholine at the vertebrate neuromuscular junction.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3