Reaction of tetraethylammonium with the open and closed conformations of the acetylcholine receptor ionic channel complex.

Author:

Adler M,Oliveira A C,Albuquerque E X,Mansour N A,Eldefrawi A T

Abstract

The effect of tetraethylammonium (TEA) bromide on the neurally and iontophoretically evoked endplate current (EPC) of frog sartorius muscle was investigated using voltage-clamp and noise analysis techniques, and its binding to the acetylcholine (ACh) receptor ionic channel complex was determined on the electric organ of Torpedo ocellata. TEA (250-500 microM) produced an initial enhancement followed by a slow decline in the amplitude of the endplate potential and EPC, but caused only depression in the amplitude of the miniature endplate potential and current. In normal ringer's solution, the EPC current-voltage relationship was approximately linear, and the decay phase varied exponentially with membrane potential. Upon addition of 50-100 microM TEA, the current-voltage relationship became markedly nonlinear at hyperpolarized command potentials, and with 250-2000 microM TEA, there was an initial linear segment, an intermediate nonlinear segment, and a region of negative conductance. The onset of nonlinearity was dose-dependent, undergoing a 50 mV shift for a 10-fold increase in TEA concentration. The EPC decay phase was shortened by TEA at hyperpolarized but not depolarized potentials, and remained a single expotential function of time at all concentrations and membrane potentials examined. These actions of TEA were found to be independent of the sequence of polarizations, the length of the conditioning pulse, and the level of the initial holding potential. TEA shifted the power spectrum of ACh noise to higher frequencies and produced a significant depression of single channel conductance. The shortening in the mean channel lifetime agreed closely with the decrease in the EPC decay time constant. At the concentrations tested, TEA did not alter the EPC reversal potential, nor the resting membrane potential, and had little effect on the action potential duration. TEA inhibited the binding of both [3H] ACh (Ki = 200 microM) and [3H]perhydrohistrionicotoxin (Ki = 280 microM) to receptor-rich membranes from the electric organ of Torpedo ocellata, and inhibited the carbamylcholine-activated 22Na+ efflux from these microsacs. It is suggested that TEA reacts with the nicotinic ACh-receptor as well as its ion channel; the voltage-dependent actions are associated with blockade of the ion channel. The results are compatible with a kinetic model in which TEA first binds to the closed conformation of the receptor-ionicchannel complex to produce a voltage-depdndent depression of endplate conductance and sudsequently to its open conformation, giving rise to the shortening in the EPC decay and mean channel lifetime.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3