Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci.

Author:

Iino M1

Affiliation:

1. Department of Pharmacology, Faculty of Medicine, University of Tokyo, Japan.

Abstract

Ca2+ dependence of the inositol 1,4,5-trisphosphate (IP3)-induced Ca release was studied in saponin-skinned smooth muscle fiber bundles of the guinea pig taenia caeci at 20-22 degrees C. Ca release from the skinned fiber bundles was monitored by microfluorometry of fura-2. Fiber bundles were first treated with 30 microM ryanodine for 120 s in the presence of 45 mM caffeine to lock open the Ca-induced Ca release channels which are present in approximately 40% of the Ca store of the smooth muscle cells of the taenia. The Ca store with the Ca-induced Ca release mechanism was functionally removed by this treatment, but the rest of the store, which was devoid of the ryanodine-sensitive Ca release mechanism, remained intact. The Ca2+ dependence of the IP3-induced Ca release mechanism was, therefore, studied independently of the Ca-induced Ca release. The rate of IP3-induced Ca release was enhanced by Ca2+ between 0 and 300 nM, but further increase in the Ca2+ concentration also exerted an inhibitory effect. Thus, the rate of IP3-induced Ca release was about the same in the absence of Ca2+ and at 3 microM Ca2+, and was about six times faster at 300 nM Ca2+. Hydrolysis of IP3 within the skinned fiber bundles was not responsible for these effects, because essentially the same effects were observed with or without Mg2+, an absolute requirement of the IP3 phosphatase activity. Ca2+, therefore, is likely to affect the gating mechanism and/or affinity for the ligand of the IP3-induced Ca release mechanism. The biphasic effect of Ca2+ on the IP3-induced Ca release is expected to form a positive feedback loop in the IP3-induced Ca mobilization below 300 nM Ca2+, and a negative feedback loop above 300 nM Ca2+.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3