Retardation of Regeneration and Division of Blepharisma by Ultraviolet Radiation and Its Photoreversal

Author:

Giese Arthur C.1,Lusignan Molly1

Affiliation:

1. From the Department of Biological Sciences, Stanford University

Abstract

Regeneration of Blepharisma undulans variety japonicus from which the hypostome has been removed is retarded by dosages of 3000 to 4600 ergs/mm.2 at wavelength 2654A most strongly when the fragment is exposed soon after cutting. Dosages greater than 4600 ergs/mm.2 prevent regeneration. Regeneration is also retarded strongly when the Blepharisma are cut soon after irradiation. Starvation retards regeneration and potentiates the effect of ultraviolet radiations. Division after regeneration of Blepharisma is also retarded by ultraviolet radiations about equally, regardless of when the Blepharisma are cut indicating a more lasting effect of the radiations upon the cells. Blepharisma cut after irradiation usually recover from the effects of the radiations sooner than uncut individuals given the same dosage. Retardation of division by ultraviolet radiation is subject to photoreversal by visible light, especially in a nitrogen atmosphere, provided the ultraviolet dose is not excessive. Visible light alone if prolonged, retards regeneration or may even kill the cut fragments of Blepharisma.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3