Effects of Dinitrophenol and Oligomycin on the Coupling between Anaerobic Metabolism and Anaerobic Sodium Transport by the Isolated Turtle Bladder

Author:

Bricker Neal S.1,Klahr Saulo1

Affiliation:

1. From the Renal Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, and the Mt. Desert Island Biological Laboratories, Salisbury Cove, Maine

Abstract

Dinitrophenol (1 x 10-5 M) has been found to inhibit anaerobic sodium transport by the isolated urinary bladder of the fresh water turtle. Concurrently, anaerobic glycolysis was stimulated markedly. However, tissue ATP levels diminished only modestly, remaining at approximately 75% of values observed under anaerobic conditions without DNP. The utilization of glucose (from endogenous glycogen) corresponded closely to that predicted from the molar quantities of lactate formed. Thus the glycolytic pathway was completed in the presence of DNP and if ATP were synthesized normally during glycolysis, synthesis should have been increased. On the other hand, the decrease in Na transport should have decreased ATP utilization. Oligomycin did not block sodium transport either aerobically or anaerobically, but ATP concentrations did decrease. When anaerobic glycolysis was blocked by iodoacetate, pyruvate did not sustain sodium transport thus suggesting that no electron acceptors were available in the system. Two explanations are entertained for the anaerobic effect of DNP: (a) Stimulation by DNP of plasma membrane as well as mitochondrial ATPase activity; (b) inhibition of a high energy intermediate derived from glycolytic ATP or from glycolysis per se. The arguments relevant to each possibility are presented in the text. Although definitive resolution is not possible, we believe that the data favor the hypothesis that there was a high energy intermediate in the anaerobic system and that this intermediate, rather than ATP, served as the immediate source of energy for the sodium pump.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The murburn precepts for cellular ionic homeostasis and electrophysiology;Journal of Cellular Physiology;2021-08-11

2. Mid Century: The Third-Generation Redux;Marine Physiology Down East: The Story of the Mt. Desert Island Biological Laboratory;2015

3. Ionophore A23187 induced reductions in toad urinary bladder epithelial cell oxidative phosphorylation and viability;Pfl�gers Archiv European Journal of Physiology;1980

4. Two modes of phosphate transport by turtle urinary bladder;American Journal of Physiology-Renal Physiology;1980-01-01

5. The Provision of Cellular Metabolic Energy for Active Ion Transport;Membrane Physiology;1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3