Actions of Genistein on Cystic Fibrosis Transmembrane Conductance Regulator Channel Gating

Author:

Wang Fei1,Zeltwanger Shawn1,Yang Iris C.-H.1,Nairn Angus C.1,Hwang Tzyh-Chang1

Affiliation:

1. From the Department of Physiology, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri 65211, Laboratory of Molecular Neuroscience, Rockefeller University, New York 10021

Abstract

Previous studies have shown that genistein increased cystic fibrosis transmembrane conductance regulator (CFTR) channel activity in the presence of saturating concentrations of forskolin and calyculin A in intact cells. Possible molecular mechanisms for genistein's action include inhibition of tyrosine kinases, inhibition of serine/threonine protein phosphatases, or direct binding of genistein to CFTR. Since genistein inhibits several enzymes that hydrolyze ATP, and ATP hydrolysis is an intrinsic property of CFTR, we examined the effect of genistein on CFTR gating in excised inside-out patches from Hi-5 insect cells and NIH3T3 cells expressing recombinant CFTR. Genistein (50 μM) did not open phosphorylated CFTR channels by itself, but increased the ATP- induced CFTR channel current by approximately twofold. A similar magnitude of enhancement was observed when genistein was applied with PKI, a specific inhibitor of protein kinase A, or vanadate, a tyrosine phosphatase inhibitor, suggesting that inhibition of protein phosphatases or tyrosine kinases does not account for genistein's effects. The enhancement of channel current increased with increasing concentrations of genistein and reached a maximum at 35 μM genistein. At higher concentrations of genistein concentration, CFTR channel current decreased, resulting in a bell-shaped dose–response relationship. In the absence of genistein, both open- and closed-time histograms could be fitted with a single exponential function, yielding a mean open time (τO) of 0.302 ± 0.002 s, and a mean closed time (τC) of 0.406 ± 0.003 s. In the presence of 50 μM genistein, the open time histogram could be fitted with a double exponential function with τO1 = 0.429 ± 0.003 s and τO2 = 2.033 ± 0.173 s. Thus, genistein induced a prolonged open state, an effect that mimics that of nonhydrolyzable ATP analogs. Closed time analysis showed that 50 μM genistein caused a prolonged closed state with a time constant of 2.410 ± 0.035 s. We thus conclude that (a) the effects of genistein are likely caused by a direct binding of the drug to the CFTR protein, and (b) at least two binding sites are required to explain the effects of genistein: a high affinity site that decreases the closing rate and a low affinity site that reduces the opening rate.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3