Cloning, Expression, and Characterization of the Squid Na+–Ca2+ Exchanger (NCX-SQ1)

Author:

He Zhaoping1,Tong Qiusheng1,Quednau Beate D.1,Philipson Kenneth D.1,Hilgemann Donald W.1

Affiliation:

1. From the Departments of Physiology and Medicine and the Cardiovascular Research Laboratories, UCLA School of Medicine, Los Angeles, California 90095-1760; and Department of Physiology, University of Texas, Southwestern Medical Center at Dallas, Dallas, Texas 75235-9040

Abstract

We have cloned the squid neuronal Na+–Ca2+ exchanger, NCX-SQ1, expressed it in Xenopus oocytes, and characterized its regulatory and ion transport properties in giant excised membrane patches. The squid exchanger shows 58% identity with the canine Na+–Ca2+ exchanger (NCX1.1). Regions determined to be of functional importance in NCX1 are well conserved. Unique among exchanger sequences to date, NCX-SQ1 has a potential protein kinase C phosphorylation site (threonine 184) between transmembrane segments 3 and 4 and a tyrosine kinase site in the Ca2+ binding region (tyrosine 462). There is a deletion of 47 amino acids in the large intracellular loop of NCX-SQ1 in comparison with NCX1. Similar to NCX1, expression of NCX-SQ1 in Xenopus oocytes induced cytoplasmic Na+-dependent 45Ca2+ uptake; the uptake was inhibited by injection of Ca2+ chelators. In giant excised membrane patches, the NCX-SQ1 outward exchange current showed Na+-dependent inactivation, secondary activation by cytoplasmic Ca2+, and activation by chymotrypsin. The NCX-SQ1 exchange current was strongly stimulated by both ATP and the ATP-thioester, ATPγS, in the presence of F− (0.2 mM) and vanadate (50 μM), and both effects reversed on application of a phosphatidylinositol-4′,5′-bisphosphate antibody. NCX1 current was stimulated by ATP, but not by ATPγS. Like NCX1 current, NCX-SQ1 current was strongly stimulated by phosphatidylinositol-4′,5′-bisphosphate liposomes. In contrast to results in squid axon, NCX-SQ1 was not stimulated by phosphoarginine (5–10 mM). After chymotrypsin treatment, both the outward and inward NCX-SQ1 exchange currents were more strongly voltage dependent than NCX1 currents. Ion concentration jump experiments were performed to estimate the relative electrogenicity of Na+ and Ca2+ transport reactions. Outward current transients associated with Na+ extrusion were much smaller for NCX-SQ1 than NCX1, and inward current transients associated with Ca2+ extrusion were much larger. For NCX-SQ1, charge movements of Ca2+ transport could be defined in voltage jump experiments with a low cytoplasmic Ca2+ (2 μM) in the presence of high extracellular Ca2+ (4 mM). The rates of charge movements showed “U”-shaped dependence on voltage, and the slopes of both charge–voltage and rate–voltage relations (1,600 s−1 at 0 mV) indicated an apparent valency of −0.6 charges for the underlying reaction. Evidently, more negative charge moves into the membrane field in NCX-SQ1 than in NCX1 when ions are occluded into binding sites.

Publisher

Rockefeller University Press

Subject

Physiology

Reference62 articles.

1. Kinetics and energetics of calcium efflux from intact squid axons;Baker;J Physiol (Camb),1976

2. Induction and disappearance of excitability in the oocyte of Xenopus laevis: a voltage-clamp study;Baud;J Physiol (Camb),1984

3. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction;Chomczynski;Anal Biochem,1987

4. The giant cardiac membrane patch method: stimulation of outward Na/Ca exchange current by MgATP;Collins;J Physiol (Camb),1992

5. The effect of ATP on Ca2+efflux in dialyzed squid giant axons;DiPolo;J Gen Physiol,1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3