THE INFLUENCE OF ELECTROLYTES ON THE CATAPHORETIC CHARGE OF COLLOIDAL PARTICLES AND THE STABILITY OF THEIR SUSPENSIONS

Author:

Loeb Jacques1

Affiliation:

1. From the Laboratories of The Rockefeller Institute for Medical Research.

Abstract

1. When collodion particles suspended in water move in an electric field they are, as a rule, negatively charged. The maximal cataphoretic P.D. between collodion particles and water is about 70 millivolts. This is only slightly more than the cataphoretic P.D. found by McTaggart to exist between gas bubbles and water (55 millivolts). Since in the latter case the P.D. is entirely due to forces inherent in the water itself, resulting possibly in an excess of OH ions in the layer of water in contact and moving with the gas bubble, it is assumed that the negative charge of the collodion particles is also chiefly due to the same cause; the collodion particles being apparently only responsible for the slight difference in maximal P.D. of water-gas and water-collodion surfaces. 2. The cataphoretic charge of collodion particles seems to be a minimum in pure water, increasing as a rule with the addition of electrolytes, especially if the cation of the electrolyte is monovalent, until a maximal P.D. is reached. A further increase in the concentration of the electrolyte depresses the P.D. again. There is little difference in the action of HCl, NaOH, and NaCl or LiCl or KCl. 3. The increase in P.D. between collodion particles and water upon the addition of electrolyte is the more rapid the higher the valency of the anion. This suggests that this increase of negative charge of the collodion particle is due to the anions of the electrolyte gathering in excess in the layer of water nearest to the collodion particles, while the adjoining aqueous layer has an excess of cations. 4. In the case of chlorides and at a pH of about 5.0 the maximal P.D. between collodion particles and water is about 70 millivolts, when the cation of the electrolyte present is monovalent (H, Li, Na, K); when the cation of the electrolyte is bivalent (Mg, Ca), the maximal P.D. is about 35 to 40 millivolts; and when the cation is trivalent (La) the maximal P.D. is lower, probably little more than 20 millivolts. 5. A reversal in the sign of charge of the collodion particles could be brought about by LaCl3 but not by acid. 6. These results on the influence of electrolytes on the cataphoretic P.D. between collodion particles and water are also of significance for the theory of electrical endosmose and anomalous osmosis through collodion membranes; since the cataphoretic P.D. is probably identical with the P.D. between water and collodion inside the pores of a collodion membrane through which the water diffuses. 7. The cataphoretic P.D. between collodion particles and water determines the stability of suspensions of collodion particles in water, since rapid precipitation occurs when this P.D. falls below a critical value of about 16 millivolts, regardless of the nature of the electrolyte by which the P.D. is depressed. No peptization effect of plurivalent anions was noticed.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3